Mobile Task Offloading Under Unreliable Edge Performance

Md Rajib Hossen, Mohammad A. Islam The University of Texas at Arlington

What and Why

Pros and Cons

Energy savings

Faster processing

- However, edge offloading incurs delay and consumes energy for data transmission
- We need to decide when and which tasks to offload

Current Studies

- Optimize latency and energy for offloaded tasks
- Consider single/multiple devices
- However, existing works assume offloaded task will always be processed at edge

- K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, and Y. Zhang. Deep learning empowered task offloading for mobile edge computing in urban informatics. IEEE Internet of Things Journal, 6(5):7635{7647, 2019.
- Ali Shakarami, Mostafa Ghobaei-Arani, and Ali Shahidinejad. A survey on the computation offloading approaches in mobile edge computing: a machine learning-based perspective. Computer Networks, page 107496, 2020.

Challenges

Intermittent capacity

Rapidly changing workload

Edge Offload to Cloud

Our Approach

- We optimize mobile energy and task completion time
- We consider unreliability in the edge
- We use "learning" to navigate the unknown environment

Objective

OPTO:
$$\min_{x_k} \sum_k (t_k + w \cdot e_k)$$

Where,

- t_k is task completion time
- e_k is energy consumption
- w is the weight variable
- x_k is the decision variable

Why Learning?

Model Free Solution

OPTO:
$$\min_{x_k} \sum_{k} (t_k + w \cdot e_k)$$

- All offloading decisions are tied together
- t_k and e_k are hard to estimate
- Difficult to generalize energy & latency
- Different area may have different resource requirements
- We use MDP with Reinforcement Learning

Reinforcement Learning

Model Free DQN Solution

- No previous knowledge needed
- Q-learning, DQN, DDPG

DeepTO

Markov Decision Process

- System State: $s_k = (a_k, e_k^b, \mu_k^m, \mu_k^e, u_k)$
 - $a_k = Task(data, cpu \ cycle), e_k^b = available \ energy$
 - $\mu_k^m = mobile \ capability, \ \mu_k^e = edge \ capability,$
 - $u_k = uplink \ rate$
- Action: $x_k \in A(s_k) \in [0,1]$
- Reward: $r_k = R(s_k, x_k, s_{k+1})$
- Q-learning poor performance
 - DQN
- User request arrival is not Markovian
 - Long Short-Term Memory (LSTM) to estimate user request and state transition

DeepTO

Network Architecture

Experimental Settings

Real World & Synthetic

- Edge workload uber trace
- Edge-to-cloud additional latency cloud ping test
- Data sizes [500 KB-1 MB] randomly distributed
- CPU cycle 500 M 2000 M
 - 500 M / 1.5 GHz = 0.33 sec
- Battery capacity 120 J
- Transmission power 500 mW
- Mobile capacity 1.5 GHz [20%-100%]
- Edge and Cloud 3.6 GHz

Results

Comparison of Algorithms

ALM – All Mobile

ALE – All Edge

GRD – **Greedy**

OPT – Optimum

DeepTo – Our approach

Results

Impact of Offloading from Edge

GRD – Greedy
OPT – Optimum
DeepTo – Our approach

Future Works

- Training time
 - Use federated learning
 - Use pre-trained model
- Use real world mobile user data

Thank you!

Questions?