### A Rent-Seeking Framework for Multipath TCP



Shiva Raj Pokhrel



Carey Williamson

Deakin University (Australia)

University of Calgary (Canada)

04 Nov 2020

### Outline

### **1** Scope and Novelty

- Rent Seeking Framework
- Motivations
- Multipath TCP [RFC6824]
- RSF-MPTCP vs Others
- 2 Rent-Seeking Framework
  - Rent-Seeking Framework
- 3 Extension to Multiple MPTCP
- 4 Performance Evaluation
  - Network Emulation Results

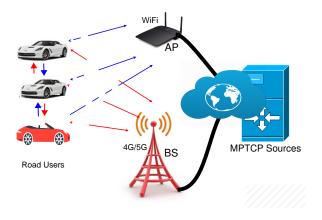



Figure 1: Internet of Vehicles: Vehicles are connected to a Server in the Internet using 5G and WiFi paths.

2 / 16

- Setup. How TCP works? Network utility maximization (NUM) for Multiple paths
- Existing Works. MPTCP LIA (2011), MPTCP OLIA (2013), MPTCP BALIA (2014)
  - ▶ No well-defined utility function for MPTCP (*Peng et al.*, 2014)
  - Conditions under which we can use Kelly's NUM mechanism
- Contributions: Utility based on Tullock's rent-seeking
  - Common delay and/or loss constraints at the subflow level
  - Utility function has diagonal strict concavity
  - Solution provides:
    - $\star$  higher throughput
    - $\star$  better robustness
    - $\star$  improved responsiveness

- Definition of "rent" economic wealth obtained through shrewd or potentially manipulative use of resources
- Rent seeking occurs when an entity seeks to gain wealth without any contribution of productivity
  - ▶ How best to aggregate WiFi and non-WiFi 5G seamlessly?
  - Kelly designed distributed congestion control: proportional fairness and max-min fairness
  - Our idea: transform NUM problem into a game between TCP flows
  - ▶ MPTCP subflows coupling can considered as a game

### Our idea

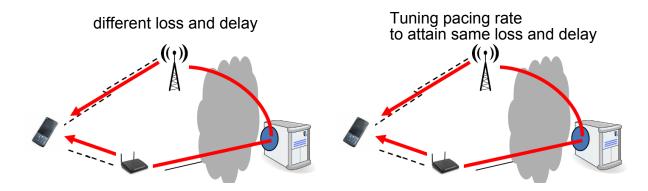



Figure 2: What is current MPTCP [RFC6824] What will Future MPTCP be?

- Ongoing development of 5G and Gigabit WiFi solutions
- MPTCP could exploit multiple available network interfaces
  - ▶ Autonomous Vehicles, AR/VR and Video streaming
  - ▶ Throughput-intensive, low end-to-end delay and high reliability
  - Our idea: transform NUM problem into a game between TCP flows
  - ▶ MPTCP subflows a game with common coupled constraints.

MPTCP LIA source has a set of subflows/paths: Each path maintains a separate congestion window  $(W_i)$  and updates its RTT  $(\tau_i)$ 

 $W_i$  in CA of MPTCP LIA (*Raiciu et al, 2011*) evolves

- For each loss indication on path *i*, update  $W_i$  as  $W_i \leftarrow W_i/2$ , and
- For each Ack received on route *i*, update  $W_i$  as  $W_i \leftarrow W_i + \alpha(W_i)$ , where

$$\alpha(W_i) = \min\left\{\delta, \frac{1}{W_i}\right\} \text{ and } \delta = \frac{\max_j(W_j/\tau_j^2)}{(\sum_j W_j/\tau_j)^2}.$$
 (1)

• If  $\alpha(W_i) = 1/W_i$ , then window evolves as TCP

• If all subflows have equal RTTs, then  $\delta = \max_j (W_j) / \sum_j W_j$ 

## LIA, OLIA, BALIA and RSF-MPTCP

| Algorithm | $\alpha$ <b>Parameter</b>                                                                                                                                                                                 | Window Increase on path <i>i</i>                                                                                  | Window Decrease on path <i>i</i>                                            |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| LIA       | $\alpha = \frac{\max\left(W_i/\tau_i^2\right)}{\left(\sum_i \frac{W_i}{\tau_i}\right)^2} \sum_i W_i$                                                                                                      | For each acknowledgment,                                                                                          | For each packet loss,                                                       |  |
|           |                                                                                                                                                                                                           | $\Delta(W_i) = \min\left(\frac{1}{W_i}, \frac{\alpha}{\sum_i W_i}\right)$                                         | $W_i \leftarrow \frac{W_i}{2}$ same as regular TCP                          |  |
| OLIA      | $\alpha_i = \begin{cases} \frac{1/ \mathcal{I} }{ \mathcal{C} }, & i \in \mathcal{C} \\ \frac{1/ \mathcal{I} }{ \mathcal{X} } & i \in \mathcal{X},  \mathcal{C}  > 0 \\ 0 & \text{otherwise} \end{cases}$ | For each acknowledgment,                                                                                          | For each packet loss,                                                       |  |
|           |                                                                                                                                                                                                           | $\Delta(W_i) = \left(\frac{\alpha_i}{W_i} + \frac{W_i/\tau_i^2}{\left(\sum_i \frac{W_i}{\tau_i}\right)^2}\right)$ | $W_i \leftarrow \frac{W_i}{2}$ same as regular TCP                          |  |
| BALIA     | $\alpha_i = \frac{\max{\{\lambda_k\}}}{\lambda_i}, \ \lambda_i = \frac{W_i}{\tau_i}, \ \lambda_k = \left(\sum_{k \in I} \frac{W_k}{\tau_k}\right)^2$                                                      | For each acknowledgment,                                                                                          | For each packet loss,                                                       |  |
|           |                                                                                                                                                                                                           | $\Delta(W_i) = \frac{\lambda_i}{\tau_i(\sum \lambda_k^2)} \frac{1+\alpha_i}{2} \frac{4+\alpha_i}{5}$              | $W_i \leftarrow W_i - \frac{W_i}{2} \min\left(\alpha_i, \frac{3}{2}\right)$ |  |

MPTCP Congestion Control for LIA, OLIA, and BALIA

The window adaptation in CA phase of RSF-MPTCP

- For each packet loss on path *i*, update  $W_i \leftarrow W_i/2$ ;
- For each new acknowledgment received on path *i*, increase  $W_i$ using  $W_i \leftarrow W_i + \Delta(W_i)$ , where:

$$\Delta(W_i) = \frac{1}{W_i} \min\left\{1, \frac{d-q_i}{q_i}\right\}.$$
(2)

Adjust the window dynamically:  $q_i$  converges toward the target delay d

A network setting with K paths and one subflow on each path

•  $\lambda_i = W_i / \tau_i \ (\lambda_i > 0)$ : sending rate for the *i*<sup>th</sup> subflow  $(1 \le i \le K)$ 

•  $p_i$  represents the corresponding price for that subflow Individual Throughput

$$\theta_i = V\left(\lambda_i / \sum_{j=1}^K \lambda_j\right),\,$$

V(.) is a concave function,  $\theta_i$  comes at the cost of  $\hat{p}\lambda_i$  (where  $\hat{p}$  is a constant)

### Extension to Multiple MPTCP

N MPTCP sources sharing K paths:

$$\sum_{n=1}^{N} \sum_{i=1}^{K} \lambda_i^n \le B.$$
(3)

Throughput obtained by the  $n^{\text{th}}$  MPTCP connection is the sum of the throughputs for all of its subflows, and is given by:

**T** 3

$$\theta^{n} = \sum_{i=1}^{K} \theta^{n}_{i}(\lambda^{n})$$

$$\theta^{n}_{i}(\lambda^{n}) = V\left(\frac{\lambda^{n}_{i}}{\sum_{m=1}^{N} \sum_{j=1}^{K} \lambda^{m}_{j}}\right)$$
(5)

Utility of the  $n^{\text{th}}$  MPTCP connection is:

$$U^{n}(\lambda) = \sum_{i=1}^{K} \left( \frac{\lambda_{i}^{n}}{\sum_{m=1}^{N} \sum_{j=1}^{K} \lambda_{j}^{m}} - \hat{p}\lambda_{i}^{n} \right).$$
(6)

### Performance Evaluation

• Experimental Testbed:

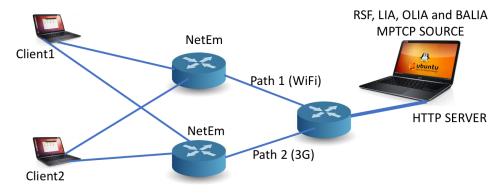



Figure 3: Experimental setup: we use Ethernet links and emulate the characteristics of WiFi and 3G paths.

- *MPTCP* algorithm based on the Rent-Seeking Framework (RSF) vs LIA, OLIA and BALIA
- Linux implementation C. Paasch *et al.*, "Multipath TCP in the Linux Kernel", available from https://www.multipath-tcp.org (released: 02-Nov-2017).

|    | Emulated                       | Regular | MPTCP Algorithm (Mbps) |      |       | (1bps) | Comments and                      |
|----|--------------------------------|---------|------------------------|------|-------|--------|-----------------------------------|
| ID | Network Scenario               | ТСР     | LIA                    | OLIA | BALIA | RSF    | Observations                      |
| 0  | Single Path                    | 1.58    | 1.53                   | 1.57 | 1.58  | 1.58   | RSF performs same as TCP & BALIA  |
| 1  | Homogeneous Paths: No Loss     | 1.58    | 2.52                   | 2.58 | 2.54  | 2.53   | RSF performs same as LIA          |
| 2  | Homogeneous Paths: 2% Loss     | -       | 0.88                   | 0.98 | 0.98  | 1.98   | RSF has 2x higher throughput      |
| 3  | Homogeneous Paths: 10% Loss    | -       | 0.31                   | 0.35 | 0.39  | 0.62   | RSF has 60-100% higher throughput |
| 4  | Heterogeneous Paths: Bandwidth | -       | 1.88                   | 1.88 | 1.98  | 2.89   | RSF has 40-50 %higher throughput  |
| 5  | Heterogeneous Paths: Delay     | -       | 2.59                   | 2.69 | 2.69  | 4.59   | RSF has 70% higher throughput     |
| 6  | Heterogeneous Paths: Loss      | -       | 3.13                   | 3.10 | 3.12  | 4.48   | RSF has 40% higher throughput     |

#### Summary of Throughput Results from Network Emulation Experiments

### • Baseline Results

- Scenario 0 used a single path network, for which all MPTCP versions are same. The first row of results confirms this observation
- Scenario 1 used two homogeneous paths with no packet loss at all. RSF MPTCP should perform the same as LIA (exact same results for both RSF-DB and RSF-LB MPTCP).

11 / 16

### Homogeneous Paths

RSF MPTCP starts to differentiate itself from the other MPTCP algorithms

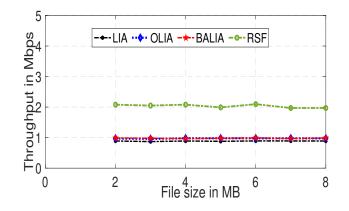



Figure 4: Homogeneous Paths with 10 Mbps bandwidth, 150 ms delay, and 2% random packet loss.

Observation 2/3. The proposed *RSF MPTCP* outperforms all other MPTCP algorithms in terms of throughput, and achieves similar fairness.

### Heterogeneous Bandwidth Paths

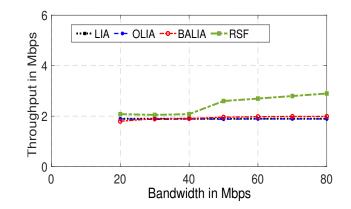



Figure 5: Throughput results for 10 MB file transfer in Scenario 4: Heterogeneous Bandwidth Paths.

• Observation 4. The proposed *RSF MPTCP* outperforms the other MPTCP algorithms when paths have heterogeneous bandwidth.

### Heterogeneous Delay Paths

Scenario 5 considers paths with heterogeneous delay characteristics.

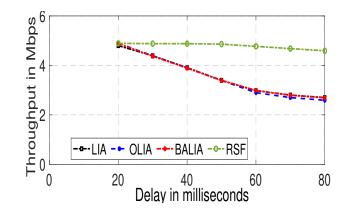



Figure 6: Throughput results for 10 MB file transfer in Scenario 5: heterogeneous delay paths. One path has 20 ms delay, while the delay of the other one is varied. Both paths have 20 Mbps bandwidth, and 3% loss.

• Observation 5. The throughput of all MPTCP algorithms (including RSF) decreases with increasing delay, the decline is quite gradual for RSF MPTCP, and quite pronounced for others.

- Developed a novel framework for designing MPTCP algorithms by using a *rent-seeking* game-theoretic framework
- The existence of a utility function with strict diagonal concavity
- Network emulation experiments: Higher throughput of RSF-MPTCP without compromising fairness
- New RSF-MPTCP is highly robust to the characteristics of heterogeneous network paths

# • Questions

