Prefetching and Caching for Minimizing Service Costs:
Optimal and Approximation Strategies

Guocong Quan, Atilla Eryilmaz, Jian Tan, Ness Shroff
The Ohio State University

IFIP Performance 2020



Prefetching & Caching

e Use caching to store the data closer to users



Prefetching & Caching

e Use caching to store the data closer to users

Need .




Prefetching & Caching

e Use caching to store the data closer to users

Need .




Prefetching & Caching

e Use caching to store the data closer to users

Need !




Prefetching & Caching

* Use caching to store the data closer to users

» Use prefetching to load the data into caches before users’ requests

Need !

in the future

J

Prefetch



Prefetching & Caching

* Use caching to store the data closer to users

» Use prefetching to load the data into caches before users’ requests

Need !

in the future

J

Prefetch



Prefetching & Caching

* Use caching to store the data closer to users

» Use prefetching to load the data into caches before users’ requests

Need !




Prefetching & Caching

* Use caching to store the data closer to users
» Use prefetching to load the data into caches before users’ requests

* Benefits of prefetching and caching:
* Service delay is lower
* Prefetching is less time-sensitive, compared to fetching

Need !

J




Prefetching & Caching

* Use caching to store the data closer to users
» Use prefetching to load the data into caches before users’ requests

* Benefits of prefetching and caching:
* Service delay is lower
» Prefetching is less time-sensitive
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Is prefetching always a good choice?

7

If not, for which requests should we choose to prefetch?
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* d;,1 <i < M:asetof data items

R,,1 <n < N:asequence of requests for the data items (assume to be known)

Data retrieval operationS'

Fetch After the request May not load into cache

Prefetch Before the request  Have to load into cache ¢ € [0,1]

Optimal offline prefetching & caching:

* Goal: Minimize the overall cost by choosing proper data retrieval operations to
serve the request sequence

e Constraint: The cache size is limited

Question 1: Should we prefetch or fetch the requested item, if it is not stored in the cache?

Question 2: Which data item should be evicted, if we load a new data item into the cache?
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Optimal Policy via Min-Cost Flow

Flow-based optimal offline policy mypr:

Flow
Network
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Cache of size 2
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Optimal Policy via Min-Cost Flow

Flow-based optimal offline policy mypr:

Flow
Network

Request
Sequence

Optimal
Prefetching Min-Cost
& Caching Flow
Policy
Cache of size 2 Prefetch R; = d,, Prefetch R, = d,
Request sequence: d4, d., dq, ds Hit R; = d,, Prefetch R, = d; & evict d;
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Optimal Policy via Min-Cost Flow

Flow-based optimal offline policy mypr:

Request Flow
Sequence Network

Optimal
Prefetching Min-Cost
& Caching Flow
Policy

Drawbacks:
e Cannot analytically answer the two proposed questions

* Need to know all future requests to make optimal decisions
* The decision for a request is unavailable unless the entire sequence is processed
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Approximation Strategy

/Approximation policy 1,: \
When the requested data is not cached, prefetch the data item and evict the FF item, if
« c<2/2
* Or, any of C1 and C2 is satisfied
\Otherwise, fetch the data and do not load it into the cache. /

* 14 only requires near future information.
e The time complexity is O(N).

* 14 achieves near optimal performance.
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Competitive Ratio

Always prefetching policy mp:

Always prefetch the requested data item if it is not cached, and evict the FF item.

Always fetching policy Ty (Belady’s algorithm):

Always fetch the missed data item and adopt the FF eviction policy.
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Evaluation

Cost per request

Optimal static policy mg:

Store the most popular items in the cache. Never update the cache content.

* Cache size: 20
* Popularity distribution: p; = P[R,, = d;],1 <i <10°1<n <10°

p; = ¢y - exp(—0.31) p; = ¢y - exp(—i®®)
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e T:the number of future requests required by 7,4 to make decisions
e« p;=c-i2,1<i<10°%1<n<N
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Summary

* Formulated a cost-based optimal offline prefetching and caching problem
* Proposed a flow-based optimal offline policy

* Analytically characterized the optimal offline policy
e Optimal eviction policy
 Sufficient conditions for optimal prefetching

* Designed a lightweight approximation policy
* Require near-future information
* Achieve near-optimal performance
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