
Prefetching and Caching for Minimizing Service Costs:
Optimal and Approximation Strategies

Guocong Quan, Atilla Eryilmaz, Jian Tan, Ness Shroff

The Ohio State University

IFIP Performance 2020

Prefetching & Caching

• Use caching to store the data closer to users

Prefetching & Caching

• Use caching to store the data closer to users

Network
📜 📜Need 📜

Cache

Backend
Storage

Prefetching & Caching

• Use caching to store the data closer to users

NetworkHit

📜 📜Need 📜

Cache

Backend
Storage

Prefetching & Caching

• Use caching to store the data closer to users

NetworkMiss
📜Need 📜

Cache

Backend
Storage

Prefetching & Caching

• Use caching to store the data closer to users

• Use prefetching to load the data into caches before users’ requests

Network
📜

Prefetch

Need 📜
in the future

Cache

Backend
Storage

Prefetching & Caching

• Use caching to store the data closer to users

• Use prefetching to load the data into caches before users’ requests

Network
📜

Prefetch

Need 📜
in the future

Cache

Backend
Storage

📜

Prefetching & Caching

• Use caching to store the data closer to users

• Use prefetching to load the data into caches before users’ requests

NetworkHit

📜 📜
Need 📜

Cache

Backend
Storage

Prefetching & Caching

• Use caching to store the data closer to users

• Use prefetching to load the data into caches before users’ requests

• Benefits of prefetching and caching:
• Service delay is lower
• Prefetching is less time-sensitive, compared to fetching

NetworkHit

📜 📜

Cache

Backend
Storage

Need 📜

Prefetching & Caching

• Use caching to store the data closer to users

• Use prefetching to load the data into caches before users’ requests

• Benefits of prefetching and caching:
• Service delay is lower
• Prefetching is less time-sensitive

NetworkHit

📜 📜

Need 📜

Is prefetching always a good choice?

If not, for which requests should we choose to prefetch?

Cache

Backend
Storage

Problem Formulation

• 𝑑! , 1 ≤ 𝑖 ≤ 𝑀: a set of data items

Problem Formulation

• 𝑑! , 1 ≤ 𝑖 ≤ 𝑀: a set of data items

• 𝑅", 1 ≤ 𝑛 ≤ 𝑁: a sequence of requests for the data items (assume to be known)

Problem Formulation

• 𝑑! , 1 ≤ 𝑖 ≤ 𝑀: a set of data items

• 𝑅", 1 ≤ 𝑛 ≤ 𝑁: a sequence of requests for the data items (assume to be known)

• Data retrieval operations:

Operation Time Caching Cost

Fetch

Prefetch

Problem Formulation

• 𝑑! , 1 ≤ 𝑖 ≤ 𝑀: a set of data items

• 𝑅", 1 ≤ 𝑛 ≤ 𝑁: a sequence of requests for the data items (assume to be known)

• Data retrieval operations:

Operation Time Caching Cost

Fetch After the request

Prefetch Before the request

Problem Formulation

• 𝑑! , 1 ≤ 𝑖 ≤ 𝑀: a set of data items

• 𝑅", 1 ≤ 𝑛 ≤ 𝑁: a sequence of requests for the data items (assume to be known)

• Data retrieval operations:

Operation Time Caching Cost

Fetch After the request May not load into cache

Prefetch Before the request Have to load into cache

Problem Formulation

• 𝑑! , 1 ≤ 𝑖 ≤ 𝑀: a set of data items

• 𝑅", 1 ≤ 𝑛 ≤ 𝑁: a sequence of requests for the data items (assume to be known)

• Data retrieval operations:

Operation Time Caching Cost

Fetch After the request May not load into cache 1
Prefetch Before the request Have to load into cache 𝑐 ∈ [0,1]

Problem Formulation

• 𝑑! , 1 ≤ 𝑖 ≤ 𝑀: a set of data items

• 𝑅", 1 ≤ 𝑛 ≤ 𝑁: a sequence of requests for the data items (assume to be known)

• Data retrieval operations:

• Optimal offline prefetching & caching:
• Goal: Minimize the overall cost by choosing proper data retrieval operations to

serve the request sequence
• Constraint: The cache size is limited

Operation Time Caching Cost

Fetch After the request May not load into cache 1
Prefetch Before the request Have to load into cache 𝑐 ∈ [0,1]

Problem Formulation

• 𝑑! , 1 ≤ 𝑖 ≤ 𝑀: a set of data items

• 𝑅", 1 ≤ 𝑛 ≤ 𝑁: a sequence of requests for the data items (assume to be known)

• Data retrieval operations:

• Optimal offline prefetching & caching:
• Goal: Minimize the overall cost by choosing proper data retrieval operations to

serve the request sequence
• Constraint: The cache size is limited

Question 1: Should we prefetch or fetch the requested item, if it is not stored in the cache?

Question 2: Which data item should be evicted, if we load a new data item into the cache?

Operation Time Caching Cost

Fetch After the request May not load into cache 1
Prefetch Before the request Have to load into cache 𝑐 ∈ [0,1]

Optimal Policy via Min-Cost Flow

Flow-based optimal offline policy 𝜋#$%:

Optimal Policy via Min-Cost Flow

Request
Sequence

Flow-based optimal offline policy 𝜋#$%:

Optimal Policy via Min-Cost Flow

Request
Sequence

Flow
Network

Flow-based optimal offline policy 𝜋#$%:

Optimal Policy via Min-Cost Flow

Request
Sequence

Flow
Network

Flow-based optimal offline policy 𝜋#$%:

Request sequence: 𝑑&, 𝑑', 𝑑&, 𝑑(
Cache of size 2

Optimal Policy via Min-Cost Flow

Request
Sequence

Flow
Network

Min-Cost
Flow

𝑂(𝑁&.*)

Request sequence: 𝑑&, 𝑑', 𝑑&, 𝑑(
Cache of size 2

Flow-based optimal offline policy 𝜋#$%:

Optimal Policy via Min-Cost Flow

Request
Sequence

Flow
Network

Min-Cost
Flow

Optimal
Prefetching
& Caching

Policy

Request sequence: 𝑑&, 𝑑', 𝑑&, 𝑑(
Cache of size 2 Prefetch 𝑅& = 𝑑&, Prefetch 𝑅' = 𝑑',

Hit 𝑅(= 𝑑&, Prefetch 𝑅+ = 𝑑(& evict 𝑑&

𝑂(𝑁&.*)

Flow-based optimal offline policy 𝜋#$%:

Optimal Policy via Min-Cost Flow

Drawbacks:
• Cannot analytically answer the two proposed questions
• Need to know all future requests to make optimal decisions
• The decision for a request is unavailable unless the entire sequence is processed

Request
Sequence

Flow
Network

Min-Cost
Flow

Optimal
Prefetching
& Caching

Policy

𝑂(𝑁&.*)

Flow-based optimal offline policy 𝜋#$%:

Characteristics of OPT

• Question 1: Should we prefetch or fetch a data item, if it is not stored in the cache?
• Question 2: Which data item should be evicted, if we cache a new data item?

Characteristics of OPT

Theorem 1: There exists an optimal policy that always evicts the farthest-in-future (FF) item.

• Question 1: Should we prefetch or fetch a data item, if it is not stored in the cache?
• Question 2: Which data item should be evicted, if we choose to prefetch and cache is full?

• FF item: the item that is stored in the cache, and requested farthest in future.

Characteristics of OPT

Theorem 1: There exists an optimal policy that always evicts the farthest-in-future (FF) item.

• Question 1: Should we prefetch or fetch a data item, if it is not stored in the cache?
• Question 2: Which data item should be evicted, if we choose to prefetch and cache is full?

Theorem 2: Assuming the FF eviction policy is adopted, prefetching a missed data item is the
optimal decision if any of the following two conditions is satisfied:
C1: There exists a request for a popular item in near future, but that data item is not cached.
C2: The prefetching cost 𝑐 is sufficiently low.

• FF item: the item that is stored in the cache, and requested farthest in future.

Characteristics of OPT

Theorem 1: There exists an optimal policy that always evicts the farthest-in-future (FF) item.

• Question 1: Should we prefetch or fetch a data item, if it is not stored in the cache?
• Question 2: Which data item should be evicted, if we choose to prefetch and cache is full?

Theorem 2: Assuming the FF eviction policy is adopted, prefetching a missed data item is the
optimal decision if any of the following two conditions is satisfied:
C1: There exists a request for a popular item in near future, but that data item is not cached.
C2: The prefetching cost 𝑐 is sufficiently low.

• FF item: the item that is stored in the cache, and requested farthest in future.

Approximation Strategy

Approximation policy 𝜋,:

When the requested data is not cached, prefetch the data item and evict the FF item, if
• 𝑐 ≤ 2/2
• Or, any of C1 and C2 is satisfied

Otherwise, fetch the data and do not load it into the cache.

Approximation Strategy

Approximation policy 𝜋,:

When the requested data is not cached, prefetch the data item and evict the FF item, if
• 𝑐 ≤ 2/2
• Or, any of C1 and C2 is satisfied

Otherwise, fetch the data and do not load it into the cache.

• 𝜋, only requires near future information.

• The time complexity is 𝑂(𝑁).
• 𝜋, achieves near optimal performance.

Competitive Ratio

Always prefetching policy 𝜋$:

Always prefetch the requested data item if it is not cached, and evict the FF item.

Always fetching policy 𝜋- (Belady’s algorithm):

Always fetch the missed data item and adopt the FF eviction policy.

Competitive Ratio

Always prefetching policy 𝜋$:

Always prefetch the requested data item if it is not cached, and evict the FF item.

Always fetching policy 𝜋- (Belady’s algorithm):

Always fetch the missed data item and adopt the FF eviction policy.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4
F

P

A

Competitive Ratio

Always prefetching policy 𝜋$:

Always prefetch the requested data item if it is not cached, and evict the FF item.

Always fetching policy 𝜋- (Belady’s algorithm):

Always fetch the missed data item and adopt the FF eviction policy.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4
F

P

A

The competitive ratio of 𝜋, is
• equal to 1 for 𝑐 ≤ 0.5 or 𝑐 = 1
• at most 2
• always less than the ones of 𝜋$ and 𝜋-

Evaluation

Optimal static policy 𝜋.:

Store the most popular items in the cache. Never update the cache content.

Evaluation

Optimal static policy 𝜋.:

Store the most popular items in the cache. Never update the cache content.

• Cache size: 20
• Popularity distribution: 𝑝! = ℙ 𝑅" = 𝑑! , 1 ≤ 𝑖 ≤ 10/, 1 ≤ 𝑛 ≤ 10*

Evaluation

0.5 0.6 0.7 0.8 0.9 1
0.8

1.15

1.5

1.85

2.2 10-3

S

F

P

A

OPT

Optimal static policy 𝜋.:

Store the most popular items in the cache. Never update the cache content.

• Cache size: 20
• Popularity distribution: 𝑝! = ℙ 𝑅" = 𝑑! , 1 ≤ 𝑖 ≤ 10/, 1 ≤ 𝑛 ≤ 10*

𝑝! = 𝑐& : exp(−0.3𝑖)

Evaluation

0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3 10-2

S

F

P

A

OPT

0.5 0.6 0.7 0.8 0.9 1
0.8

1.15

1.5

1.85

2.2 10-3

S

F

P

A

OPT

0.5 0.6 0.7 0.8 0.9 1
0.3

0.5

0.7

0.9

1.1 10-2

S

F

P

A

OPT

Optimal static policy 𝜋.:

Store the most popular items in the cache. Never update the cache content.

• Cache size: 20
• Popularity distribution: 𝑝! = ℙ 𝑅" = 𝑑! , 1 ≤ 𝑖 ≤ 10/, 1 ≤ 𝑛 ≤ 10*

𝑝! = 𝑐& : exp(−0.3𝑖) 𝑝! = 𝑐' : exp(−𝑖0./) 𝑝! = 𝑐(: 𝑖1'

Evaluation

• 𝑇: the number of future requests required by 𝜋, to make decisions
• 𝑝! = 𝑐 : 𝑖1', 1 ≤ 𝑖 ≤ 10/, 1 ≤ 𝑛 ≤ 𝑁

Evaluation

• 𝑇: the number of future requests required by 𝜋, to make decisions
• 𝑝! = 𝑐 : 𝑖1', 1 ≤ 𝑖 ≤ 10/, 1 ≤ 𝑛 ≤ 𝑁

𝑐 = 0.85, 𝑏 = 50

2 4 6 8 10
0

0.4

0.8

1.2

1.6 104

0.75 0.80 0.85 0.90 0.95
0

0.4

0.8

1.2

1.6 104

50 100 150 200 250
0

0.7

1.4

2.1

2.8 105
𝑁 = 5×10*, 𝑏 = 50 𝑁 = 5×10*, 𝑐 = 0.85

Summary

• Formulated a cost-based optimal offline prefetching and caching problem

Summary

• Formulated a cost-based optimal offline prefetching and caching problem

• Proposed a flow-based optimal offline policy

Summary

• Formulated a cost-based optimal offline prefetching and caching problem

• Proposed a flow-based optimal offline policy

• Analytically characterized the optimal offline policy
• Optimal eviction policy
• Sufficient conditions for optimal prefetching

Summary

• Formulated a cost-based optimal offline prefetching and caching problem

• Proposed a flow-based optimal offline policy

• Analytically characterized the optimal offline policy
• Optimal eviction policy
• Sufficient conditions for optimal prefetching

• Designed a lightweight approximation policy
• Require near-future information
• Achieve near-optimal performance

Q & A

Thank you!

