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• Use caching to store the data closer to users

• Use prefetching to load the data into caches before users’ requests

• Benefits of prefetching and caching:
• Service delay is lower
• Prefetching is less time-sensitive
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Is prefetching always a good choice? 

If not, for which requests should we choose to prefetch?
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Problem Formulation

• 𝑑! , 1 ≤ 𝑖 ≤ 𝑀: a set of data items

• 𝑅", 1 ≤ 𝑛 ≤ 𝑁: a sequence of requests for the data items (assume to be known)

• Data retrieval operations:

• Optimal offline prefetching & caching: 
• Goal: Minimize the overall cost by choosing proper data retrieval operations to 

serve the request sequence 
• Constraint: The cache size is limited

Question 1: Should we prefetch or fetch the requested item, if it is not stored in the cache?

Question 2: Which data item should be evicted, if we load a new data item into the cache?

Operation Time Caching Cost

Fetch After the request May not load into cache 1
Prefetch Before the request Have to load into cache 𝑐 ∈ [0,1]
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Request sequence: 𝑑&, 𝑑', 𝑑&, 𝑑(
Cache of size 2 Prefetch 𝑅& = 𝑑&, Prefetch 𝑅' = 𝑑',

Hit 𝑅( = 𝑑&, Prefetch 𝑅+ = 𝑑( & evict 𝑑&
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Flow-based optimal offline policy 𝜋#$%:



Optimal Policy via Min-Cost Flow

Drawbacks:
• Cannot analytically answer the two proposed questions 
• Need to know all future requests to make optimal decisions
• The decision for a request is unavailable unless the entire sequence is processed
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Approximation Strategy

Approximation policy 𝜋,:

When the requested data is not cached, prefetch the data item and evict the FF item, if 
• 𝑐 ≤ 2/2
• Or, any of C1 and C2 is satisfied 

Otherwise, fetch the data and do not load it into the cache. 

• 𝜋, only requires near future information.

• The time complexity is 𝑂(𝑁).
• 𝜋, achieves near optimal performance. 
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Competitive Ratio

Always prefetching policy 𝜋$:

Always prefetch the requested data item if it is not cached, and evict the FF item.

Always fetching policy 𝜋- (Belady’s algorithm):

Always fetch the missed data item and adopt the FF eviction policy.
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The competitive ratio of 𝜋, is
• equal to 1 for 𝑐 ≤ 0.5 or 𝑐 = 1
• at most  2
• always less than the ones of 𝜋$ and 𝜋-
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Optimal static policy 𝜋.:

Store the most popular items in the cache. Never update the cache content.

• Cache size: 20
• Popularity distribution: 𝑝! = ℙ 𝑅" = 𝑑! , 1 ≤ 𝑖 ≤ 10/, 1 ≤ 𝑛 ≤ 10*

𝑝! = 𝑐& : exp(−0.3𝑖) 𝑝! = 𝑐' : exp(−𝑖0./) 𝑝! = 𝑐( : 𝑖1'
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Evaluation 

• 𝑇: the number of future requests required by 𝜋, to make decisions
• 𝑝! = 𝑐 : 𝑖1', 1 ≤ 𝑖 ≤ 10/, 1 ≤ 𝑛 ≤ 𝑁

𝑐 = 0.85, 𝑏 = 50
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Summary

• Formulated a cost-based optimal offline prefetching and caching problem

• Proposed a flow-based optimal offline policy

• Analytically characterized the optimal offline policy
• Optimal eviction policy
• Sufficient conditions for optimal prefetching

• Designed a lightweight approximation policy
• Require near-future information
• Achieve near-optimal performance
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