Prefetching and Caching for Minimizing Service Costs:
Optimal and Approximation Strategies

Guocong Quan, Atilla Eryilmaz, Jian Tan, Ness Shroff
The Ohio State University

IFIP Performance 2020

Prefetching & Caching

e Use caching to store the data closer to users

Prefetching & Caching

e Use caching to store the data closer to users

Need .

Prefetching & Caching

e Use caching to store the data closer to users

Need .

Prefetching & Caching

e Use caching to store the data closer to users

Need !

Prefetching & Caching

* Use caching to store the data closer to users

» Use prefetching to load the data into caches before users’ requests

Need !

in the future

J

Prefetch

Prefetching & Caching

* Use caching to store the data closer to users

» Use prefetching to load the data into caches before users’ requests

Need !

in the future

J

Prefetch

Prefetching & Caching

* Use caching to store the data closer to users

» Use prefetching to load the data into caches before users’ requests

Need !

Prefetching & Caching

* Use caching to store the data closer to users
» Use prefetching to load the data into caches before users’ requests

* Benefits of prefetching and caching:
* Service delay is lower
* Prefetching is less time-sensitive, compared to fetching

Need !

J

Prefetching & Caching

* Use caching to store the data closer to users
» Use prefetching to load the data into caches before users’ requests

* Benefits of prefetching and caching:
* Service delay is lower
» Prefetching is less time-sensitive

Need !

J

Is prefetching always a good choice?

7

If not, for which requests should we choose to prefetch?

Problem Formulation

* d;,1 <i < M:asetof data items

Problem Formulation

* d;,1 <i < M:asetof data items

* R,,1 <n < N:asequence of requests for the data items (assume to be known)

Problem Formulation

* d;,1 <i < M:asetof data items
* R,,1 <n < N:asequence of requests for the data items (assume to be known)
e Data retrieval operations:

Fetch

Prefetch

Problem Formulation

* d;,1 <i < M:aset of data items
* R,,1 <n < N:asequence of requests for the data items (assume to be known)
e Data retrieval operations:

Fetch After the request

Prefetch Before the request

Problem Formulation

* d;,1 <i < M:aset of data items
* R,,1 <n < N:asequence of requests for the data items (assume to be known)
e Data retrieval operations:

Fetch After the request May not load into cache

Prefetch Before the request Have to load into cache

Problem Formulation

* d;,1 <i < M:aset of data items
* R,,1 <n < N:asequence of requests for the data items (assume to be known)
e Data retrieval operationS'

Fetch After the request May not load into cache

Prefetch Before the request Have to load into cache ¢ € [0,1]

Problem Formulation

* d;,1 <i < M:aset of data items

R,,1 <n < N:asequence of requests for the data items (assume to be known)

Data retrieval operationS'

Fetch After the request May not load into cache

Prefetch Before the request Have to load into cache ¢ € [0,1]

Optimal offline prefetching & caching:

* Goal: Minimize the overall cost by choosing proper data retrieval operations to
serve the request sequence

e Constraint: The cache size is limited

Problem Formulation

* d;,1 <i < M:asetof data items

R,,1 <n < N:asequence of requests for the data items (assume to be known)

Data retrieval operationS'

Fetch After the request May not load into cache

Prefetch Before the request Have to load into cache ¢ € [0,1]

Optimal offline prefetching & caching:

* Goal: Minimize the overall cost by choosing proper data retrieval operations to
serve the request sequence

e Constraint: The cache size is limited

Question 1: Should we prefetch or fetch the requested item, if it is not stored in the cache?

Question 2: Which data item should be evicted, if we load a new data item into the cache?

Optimal Policy via Min-Cost Flow

Flow-based optimal offline policy mypr:

Optimal Policy via Min-Cost Flow

Flow-based optimal offline policy mypr:

Request

Sequence

Optimal Policy via Min-Cost Flow

Flow-based optimal offline policy mypr:

Flow

Request

Network

Sequence

Optimal Policy via Min-Cost Flow

Flow-based optimal offline policy mypr:

Request

Sequence

Cache of size 2
Request sequence: d4, d-, d4, ds
(1,1)

Flow

Network

/ T
+£@ (1,1):@ (L0), @ /(/1 1) o (1,0) @—1 0 (1,0) o
Q@ & < ' O@

[, MO, X0 NN, W XN ek,

Optimal Policy via Min-Cost Flow

Flow-based optimal offline policy mypr:

Flow
Network

Request

Sequence

Min-Cost
Flow

Cache of size 2
Request sequence: d4, d,, d4, d;

@ 0 o o o0 020' 0 00

- 7/ 7

@ (2,0)=@ 2.0) @ 2.0 @ 2,0) @ 2.0, @ (2,0) =@ (2,0)=@

Optimal Policy via Min-Cost Flow

Flow-based optimal offline policy mypr:

Flow
Network

Request
Sequence

Optimal
Prefetching Min-Cost
& Caching Flow
Policy
Cache of size 2 Prefetch R; = d,, Prefetch R, = d,
Request sequence: d4, d., dq, ds Hit R; = d,, Prefetch R, = d; & evict d;

‘@ 0 o0 "o 00 000 0120

N S S

@ (2,0) . @ (2,0) (2,0) @ (2,0) @ (2,0) @ (2,0) . @ (2,0) R @

Optimal Policy via Min-Cost Flow

Flow-based optimal offline policy mypr:

Request Flow
Sequence Network

Optimal
Prefetching Min-Cost
& Caching Flow
Policy

Drawbacks:
e Cannot analytically answer the two proposed questions

* Need to know all future requests to make optimal decisions
* The decision for a request is unavailable unless the entire sequence is processed

Characteristics of OPT

* Question 1: Should we prefetch or fetch a data item, if it is not stored in the cache?
 (Question 2: Which data item should be evicted, if we cache a new data item?

Characteristics of OPT

* Question 1: Should we prefetch or fetch a data item, if it is not stored in the cache?
* Question 2: Which data item should be evicted, if we choose to prefetch and cache is full?

[Theorem 1: There exists an optimal policy that always evicts the farthest-in-future (FF) item}

 FFitem: the item that is stored in the cache, and requested farthest in future.

Characteristics of OPT

* Question 1: Should we prefetch or fetch a data item, if it is not stored in the cache?
* Question 2: Which data item should be evicted, if we choose to prefetch and cache is full?

[Theorem 1: There exists an optimal policy that always evicts the farthest-in-future (FF) item}

 FFitem: the item that is stored in the cache, and requested farthest in future.

Theorem 2: Assuming the FF eviction policy is adopted, prefetching a missed data item is the
optimal decision if any of the following two conditions is satisfied:

C1: There exists a request for a popular item in near future, but that data item is not cached.

62: The prefetching cost c is sufficiently low. P

Characteristics of OPT

* Question 1: Should we prefetch or fetch a data item, if it is not stored in the cache?
* Question 2: Which data item should be evicted, if we choose to prefetch and cache is full?

[Theorem 1: There exists an optimal policy that always evicts the farthest-in-future (FF) item]

 FFitem: the item that is stored in the cache, and requested farthest in future.

Theorem 2: Assuming the FF eviction policy is adopted, prefetching a missed data item is the
optimal decision if any of the following two conditions is satisfied:

C1: There exists a request for a popular item in near future, but that data item is not cached.

\CZ: The prefetching cost c is sufficiently low. P

Approximation Strategy

/Approximation policy 1,: N\
When the requested data is not cached, prefetch the data item and evict the FF item, if

« c<2/2
* Or, any of C1 and C2 is satisfied

KOtherwise, fetch the data and do not load it into the cache. /

Approximation Strategy

/Approximation policy 1,: \
When the requested data is not cached, prefetch the data item and evict the FF item, if
« c<2/2
* Or, any of C1 and C2 is satisfied
\Otherwise, fetch the data and do not load it into the cache. /

* 14 only requires near future information.
e The time complexity is O(N).

* 14 achieves near optimal performance.

Competitive Ratio

[Always prefetching policy p:

Always prefetch the requested data item if it is not cached, and evict the FF item.

[Always fetching policy Ty (Belady’s algorithm):

Always fetch the missed data item and adopt the FF eviction policy.

Competitive Ratio

Always prefetching policy mp:

Always prefetch the requested data item if it is not cached, and evict the FF item.

Always fetching policy Ty (Belady’s algorithm):

Always fetch the missed data item and adopt the FF eviction policy.

4 ‘
........ T

o P -

Z 3 --

H 0

qé) —ﬂ'A

20 T - -

e -

5 | e -

o 1

@)

03 04 05 06 07 08 09 1
Prefetching cost: ¢

Competitive Ratio

Always prefetching policy mp:

Always prefetch the requested data item if it is not cached, and evict the FF item.

Always fetching policy Ty (Belady’s algorithm):

Always fetch the missed data item and adopt the FF eviction policy.

\V)

—

w

.

Competitive ratio

04 05 06 07 08
Prefetching cost: ¢

0.9

The competitive ratio of m, is
e equaltolforc<050rc=1
at most /2

always less than the ones of mp and 7

Evaluation

Optimal static policy mg:

Store the most popular items in the cache. Never update the cache content.

Evaluation

Optimal static policy mg:
Store the most popular items in the cache. Never update the cache content.

* Cache size: 20
* Popularity distribution: p; = P[R,, = d;],1 <i <10°1<n <10°

Cost per request

Evaluation

Optimal static policy mg:

Store the most popular items in the cache. Never update the cache content.

* Cache size: 20
* Popularity distribution: p; = P[R,, = d;],1 <i <10°1<n <10°

p; = ¢q * exp(—0.3i)

2.2

1.85¢

1.5

8 ‘ ‘ ‘ ‘
05 06 07 08 09 1
Prefetching cost: ¢

Evaluation

Cost per request

Optimal static policy mg:

Store the most popular items in the cache. Never update the cache content.

* Cache size: 20
* Popularity distribution: p; = P[R,, = d;],1 <i <10°1<n <10°

p; = ¢y - exp(—0.31) p; = ¢y - exp(—i®®)

%107 x107

2.2 ‘ ‘ ‘ ‘ 1.1

1.85¢

1.5

Cost per request
Cost per request

OPT

0.8 : : : : 0.3 : : : : : : : :
05 06 07 08 09 1 05 06 07 08 09 1 05 06 07 08 09
Prefetching cost: ¢ Prefetching cost: ¢ Prefetching cost: ¢

1

Evaluation

e T:the number of future requests required by 7,4 to make decisions
e« p;=c-i2,1<i<10°%1<n<N

Evaluation

e T:the number of future requests required by 7,4 to make decisions
e« p;=c-i2,1<i<10°%1<n<N

c=0.850b=50 N =5x10°b =50 N = 5x10°% ¢ = 0.85
4 4 5
1619 ‘ ‘ ‘ ‘ 1619 ‘ ‘ ‘ ‘ 2.8 X10
-
1
— 1
12 - T - - 120 | - - - 21" -
| | - | 1 X | 1] 1 1
1 1 | ! ! | ! 1 1 1 - 1
| | | | | . | |) | 1 .
1 1 . 1 1 . 1 |) | 1
| | . : : | : 1 1 1 :
~O08 1 ~08 L ~ 1.4]
1
gt
! 1
o o B o7
! I ! : i l l I I ! == : :
| | | |
2 4 6 8 10 0.75 0.80 0.85 0.90 0.95 50 100 150 200 250
Trace length: N (x109) Prefetching cost: ¢ Cache size: b

Summary

* Formulated a cost-based optimal offline prefetching and caching problem

Summary

* Formulated a cost-based optimal offline prefetching and caching problem

* Proposed a flow-based optimal offline policy

Summary

* Formulated a cost-based optimal offline prefetching and caching problem
* Proposed a flow-based optimal offline policy
* Analytically characterized the optimal offline policy

e Optimal eviction policy
 Sufficient conditions for optimal prefetching

Summary

* Formulated a cost-based optimal offline prefetching and caching problem
* Proposed a flow-based optimal offline policy

* Analytically characterized the optimal offline policy
e Optimal eviction policy
 Sufficient conditions for optimal prefetching

* Designed a lightweight approximation policy
* Require near-future information
* Achieve near-optimal performance

Q&A

Thank you!

