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Concurrent Workloads and the Scheduler

• Concurrent kernel execution for higher GPU resource utilization

• Thread block scheduler partitions computational resources
• Shared memory

• Threads

• Registers

• Difficult to measure performance

• NVIDIA devices are black-box

• We rely on empirical observations of the scheduler
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Key Findings

• The scheduler uses a most-room policy for placing blocks on SMs

• Counter-intuitive performance degradation for concurrent workloads

• Predictability is challenging due to external factors

• Block placement

• Resource contention

• Launch order
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The CUDA Programming 
Model
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Policies of the Thread Block Scheduler

• When are blocks scheduled?

• Which block does the scheduler choose?

• Where will that block be placed?
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The Leftover Policy

• The leftover policy: determining when and which block
• As soon as space is available on some SM

• Only thread blocks from the earliest launched kernel
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The Most-Room Policy

• The most-room policy: determining where

• The selected block will be placed on the SM with the most room 
for blocks of the current kernel

• Based on each SM's current resource availability

• The first resource to run out becomes the limiting resource
• Computational resources, i.e. shared memory, threads, registers

• Hardware limits, i.e. max blocks per SM, max warps per SM

• Ties are broken using a set tie-breaking ordering
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Performance Implications
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Kernel Classes

• L1-cache-dependent

• Performance depends primarily on the amount of L1 cache contention

• Compute-intensive

• Performance is bounded by the number of computations that can be 
performed per unit of time

• Memory-intensive
• Performance is dependent on global memory throughput

• PCIe-transfer-dependent

• On discrete GPUs, performance depends on the speed at which page 
faults can be handled by the GPU
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Results (Turing GPU)

Serial (ms) Concurrent-Isolated (ms) Concurrent-Colocated (ms)

Kernel X Kernel Y Total Kernel X Kernel Y Kernel X Kernel Y

L1-Cache-Dependent 85 79 164 85 79 105 (1.24X) 105 (1.33X)

Compute-Intensive 523 365 888 527 529 (1.45X) 530 676 (1.85X)

Memory-Intensive 949 10 959 951 224 (22.4X) 955 961 (96.1X)

PCIe-Bandwidth-Dep. 369 130 499 385 (1.04X) 355 (2.73X) 388 (1.05X) 466 (3.58X)
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Conclusions

• The scheduler uses a most-room policy for placing blocks on SMs
• For choosing which SM to schedule the next thread block to
• Chooses the SM which can fit the highest number of blocks from the kernel
• Not a round-robin policy as previously believed

• Counter-intuitive performance degradation for concurrent workloads
• Depends on the kernel type
• Is influenced by resource contention & SM placement

• Predictability is challenging due to external factors
• Block placement
• Resource contention
• Launch order
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