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Motivation

Caching and resource allocation problems are ubiquitous

CDN Cloud Computing Internet of Things
Content-Centric 
Networks



User nodes generate requests for content items with certain request rates
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Nodes have caches with finite capacities
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Requests terminate early upon a cache hit
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Caching Gain Rate:



Q: How should items be allocated to caches?

Optimal Content Allocation

?

?

User

?



Existing Works: Caching Gain Rate

This work: Instead of simply maximizing the overall caching gain rate, 
we take fairness into consideration.

Advantages:
• It captures popularities and routing cost

• In a general cache network, algorithms that ignore routing cost can be 
arbitrarily suboptimal [Ioannidis and Yeh 2016] 

• The objective function is submodular [Shanmugam et al. 2013]
• Approximation algorithms exist

Several papers study the maximization of the overall caching gain rate
• Caching in general networks [Ioannidis and Yeh 2016] 
• Caching in resilient networks [Li et al. 2018]
• Joint routing and caching [Ioannidis and Yeh 2018]



Existing Works: Fair Caching

• Either specific fairness notions (e.g. proportional fairness) or α-fair utility 
functions

• They consider different utilities/objectives.
• Hit ratio, e.g. [Dehghan et al. 2016], [Panigraphy et al. 2017], [Chu et al. 

2017] 
• Storage and fetching cost [Wang et al. 2016], video quality [Avrachenkov et 

al. 2019], throughput [Bonald et al. 2017], delay [Rezvani et al. 2019]
• They do not capture the multi-hop routing cost. Can be suboptimal in a 

general cache network
• EX: Requests served with hit ratio 1 at a distant server, in reality, have a 

lower utility than requests served locally with a lower hit ratio.

This work: To study the fair caching problem in a general cache network, we 
consider the utility of caching gain rate.



• Formal statement of the fair caching network model

• NP-Hard

• Maximizing submodular objective under matroid constraints

• Greedy Algorithm, 1/2 approximation factor

• Continuous Greedy, 1-1/e approximation factor

• Stationary Randomized strategy

• L-method,                      approximation factor

• Evaluations

• Performance under synthetic and real-world network topologies

• Analysis for the effect of fairness

Contributions
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Model: Network

Network represented as a directed, bi-directional graph  



Model: Edge Costs

Each edge                    has a cost/weight 
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Edge costs: 



Model: Node Caches

Node               has  a cache with capacity   

Node capacities: 

Edge costs: 



Model: Cache Contents

Node capacities: 

Edge costs: 

: the catalog of equally sized contents



Model: Cache Contents

Node capacities: 

Edge costs: 

For             and            ,  let

if     stores  

o.w.

Then, for all           ,  



Model: Cache Contents

Node capacities: 

Edge costs: 

The global allocation strategy is the binary                      matrix

, for all 



Model: Designated Servers

Node capacities: 

Edge costs: 

For each           ,  there exists a set of  nodes              (the 

designated servers of   ) that permanently store    .

, for all 



Model: Demand

Node capacities: 

Edge costs: 

A request is a pair          such that:  

, for all 

❑ is an item in

❑ is a simple path in       such that                 .  

Requests are always 

satisfied!

?



Model: Demand

Node capacities: 

Edge costs: 

Demand : set of all requests

?

The request rate of each request is            (number of requests 

per unit of time) 

Request rates:: demand

, for all 



Model: Routing Costs & Caching Gain

Node capacities: 

Edge costs: 

?

Request rates:: demand

, for all 

Worst case routing cost:
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Model: Routing Costs & Caching Gain

Node capacities: 

Edge costs: 

?

Request rates:: demand

, for all 
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Cost due to intermediate caching:

Worst case routing cost:

Request

3



Model: Routing Costs & Caching Gain

Node capacities: 

Edge costs: 

?

Request rates:: demand

, for all 
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Cost due to intermediate caching:

Worst case routing cost:

Caching Gain:

Request



Utility Maximization

Node capacities: 

Edge costs: 

Request rates:: demand

, for all 

Caching Gain:
?
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α-fair utility functions [Mo et al. TON 2000]

α fairness

α=0, no fairness
α=1, proportional fairness
α→∞,   max-min fairness



Utility Maximization

Node capacities: 

Edge costs: 

Request rates:: demand

, for all 

Caching Gain:
?
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Utility of requests:

Utility of requests: 

Caching gain rate:



Utility Maximization

Node capacities: 

Edge costs: 

Request rates:: demand

, for all 

?
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Caching Gain:

Maximize:

Subject to: ,             for all 

,             for all              and  

Utility of requests:

NP hard, when α =  0, [Shanmugam et al. IT 2013]
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Submodularity

Thm:
For all α-fair utility functions, the utility maximization problem is submodular 
maximization under matroid constraints

Two polynomial approximation algorithms:

Greedy algorithm produces a solution within 1/2 approximation factor 
[Calinescu et al. 2007].

Continuous greedy algorithm produces a solution within 1-1/e approximation 
factor [Calinescu et al. 2011].



Submodular
maximization

Continuous-Greedy Algorithm

Continuous greedy algorithm produces a solution within 1-1/e approximation 
factor [Calinescu et al. 2011].



Submodular
maximization

Non-convex 
maximization

Multilinear Extension

Continuous-Greedy Algorithm

Continuous greedy algorithm produces a solution within 1-1/e approximation 
factor [Calinescu et al. 2011].

We consider        as random variables with joint distribution:



Iterate:

Submodular
maximization

Non-convex 
maximization

Multilinear Extension

Frank-Wolfe

Fractional

Continuous-Greedy Algorithm

Continuous greedy algorithm produces a solution within 1-1/e approximation 
factor [Calinescu et al. 2011].



Submodular
maximization

Non-convex 
maximization

Multilinear Extension

Frank-Wolfe

Pipage Rounding

Thm: With high probability,

FractionalInteger

Continuous-Greedy Algorithm

Continuous greedy algorithm produces a solution within 1-1/e approximation 
factor [Calinescu et al. 2011].
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Stationary Randomized Strategy

• We consider a time-slotted system.
• At each time slot, a random caching strategy is sampled from a joint 

distribution over the feasible set:

• Our problem becomes

Distribution

Thm:
There exists a polynomial method that produces a distribution which is 
within                      from the optimal in expectation.
This approximation factor is better than 1-1/e for utility functions with α < 1



Utility of expected 
caching gain rate

L-method



Maximizing total 
utility over Y

Equivalence

Optimal solution:  Y*

Utility of expected 
caching gain rate

L-method



Equivalence

Convex 
approximation

Fractional

Optimal solution:  Y*

Maximizing total 
utility over Y

Convex function

Utility of expected 
caching gain rate

L-method



Equivalence

Convex 
approximation

Fractional

Optimal solution:  Y*

Convex Optimization Optimal solution:  Y**

Maximizing total 
utility over Y

Utility of expected 
caching gain rate

L-method



Equivalence

Convex 
approximation

Random rounding
FractionalDistribution

Optimal solution:  Y*

Optimal solution:  Y**

[Ioannidis and Yeh 2016]

Maximizing total 
utility over Y

Utility of expected 
caching gain rate

L-method
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Caching algorithms

 GRD
 CG
 L
 FIFO
 LRU
 LFU
 RR

proposed ones

We show the algorithms outperform the 
baseline caching algorithms (LRU, LFU, FIFO, 
RR) over different synthetic and real-world 
topologies. 

Performance Evaluation

Note that the y-axis uses log-scale



Effect of Fairness: Content Allocation

• Why we want to use this fair caching model? What will this model give us?

• We show that content items with different popularities are more fairly 
stored in the network if we consider the fair caching scheme.



Effect of Fairness: Content Allocation

4-ary balanced tree of height 4: 
 Requests are generated u.a.r. at the leaf nodes
 The root is the server of all content items
 Content popularities follow Zipf distribution. The content with smaller index has 

higher popularity

Server

?

Layer 0

Layer 1

Layer 2

Layer 3



Effect of Fairness: Content Allocation

4-ary tree with height 3: 
 Requests enter the network from the leaf nodes
 The root is the server of all content items
 Content popularities follow Zipf distribution. The content with smaller index has 

higher popularity
 The height of a bar is the fraction of total cache space used to store a content

Only cache content 1 and 2 in layer 3



Summary

 Fair caching model: utility maximization problem

 We study several polynomial offline solutions

 Content items are more fairly stored in the network

 Future direction: Distributed and adaptive algorithms?



Thank you!



Submodularity

non-decreasing 
concave

We are maximizing a monotone submodular function under matroid constraints

monotone and submodular

non-decreasing 
submodular

non-decreasing 
submodular

,     for all 

,     for all              and  

matroid constraints



Greedy Algorithm

Greedy algorithm produces a solution within 1/2 approximation factor 
[Calinescu et al. 2007].

Main idea: In each iteration, select an item to put in the cache of one of the 
nodes such that the overall utility increment is maximized.



Effect of Fairness: Caching Gain

• We confirm that caching gain is more fairly distributed across different 
requests, content items, and users when we consider request fairness, 
content fairness, and user fairness, respectively.



Effect of Fairness: Caching Gain

Request fairness
Request fairness

User fairness

Request fairness

Content fairness

• Sharpness
• Area Above Curve 

(AAC)

L-method
α = 2
GEANT topology


