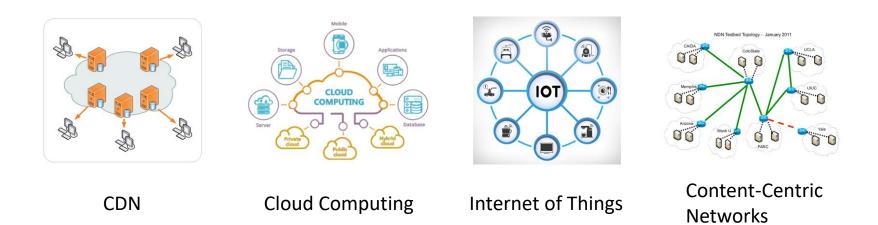
Fair Caching Networks

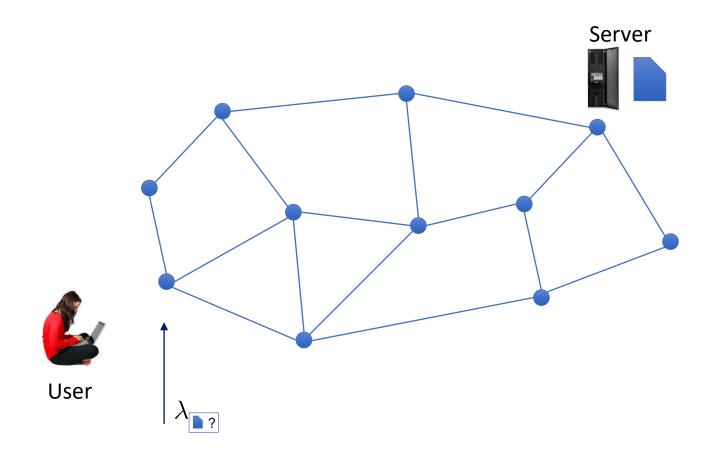
Yuezhou Liu^a, Yuanyuan Li^a, Qian Ma^b, Stratis Ioannidis^a, Edmund Yeh^a

> ^aNortheastern University ^bSun Yat-sen University

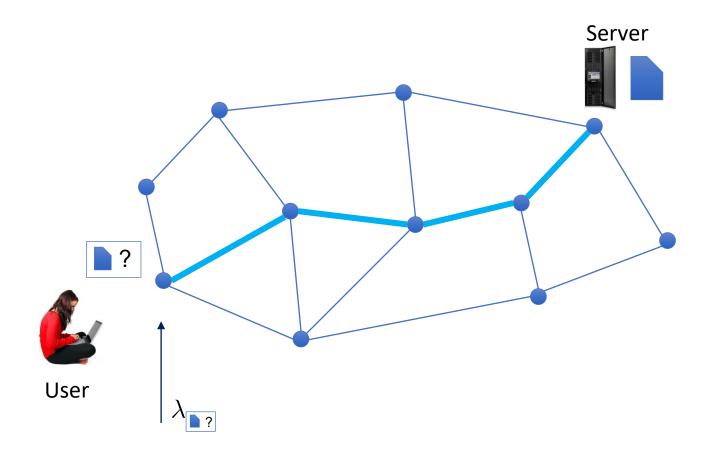
Motivation



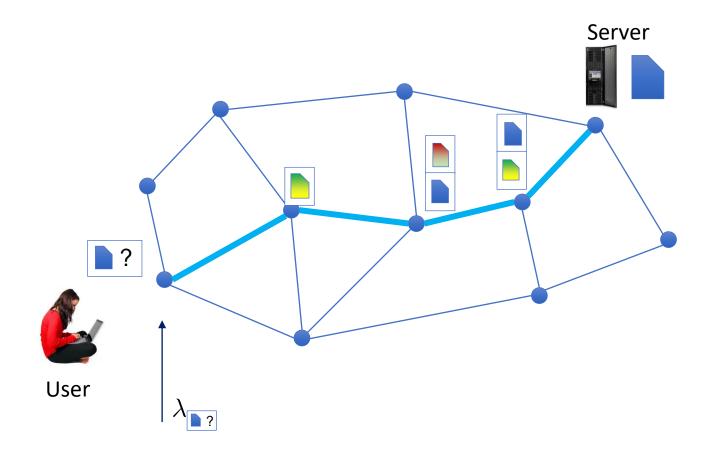
Caching and resource allocation problems are ubiquitous



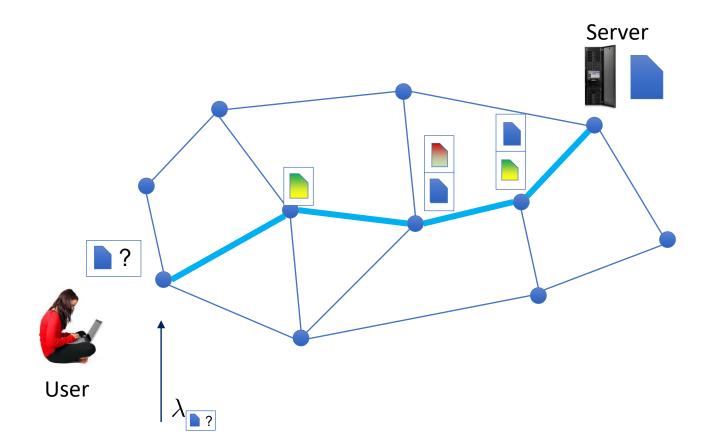
User nodes generate **requests** for content items with certain request rates



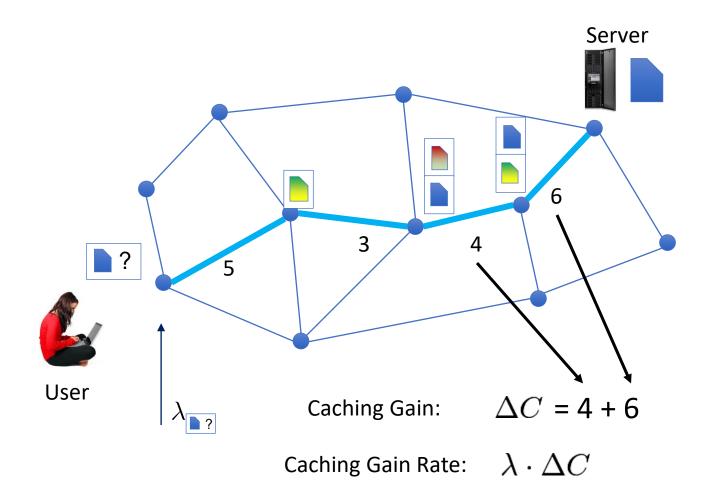
Requests are **routed** towards a **designated server**



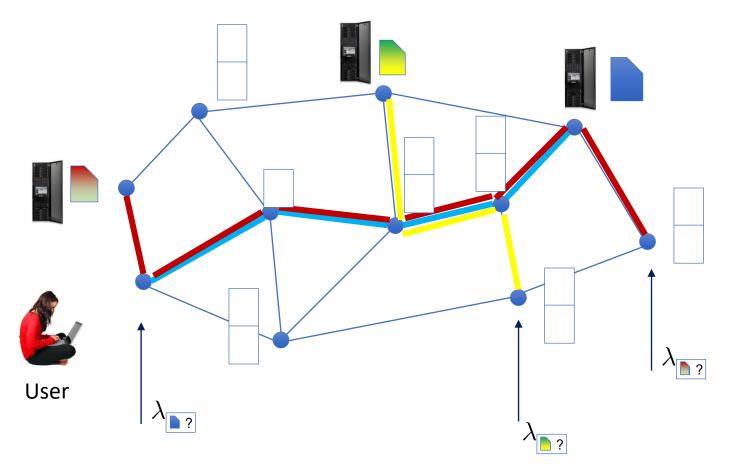
Nodes have **caches** with finite capacities



Requests terminate early upon a **cache hit** Content is sent back over **reverse** path



Optimal Content Allocation



Q: How should items be allocated to caches?

Existing Works: Caching Gain Rate

 $\sum \lambda \cdot \Delta C$

Several papers study the maximization of the overall caching gain rate

- Caching in general networks [Ioannidis and Yeh 2016]
- Caching in resilient networks [Li et al. 2018]
- Joint routing and caching [loannidis and Yeh 2018]

Advantages:

- It captures popularities and routing cost
 - In a **general cache network**, algorithms that ignore routing cost can be arbitrarily **suboptimal** [Ioannidis and Yeh 2016]
- The objective function is **submodular** [Shanmugam et al. 2013]
 - Approximation algorithms exist

This work: Instead of simply maximizing the overall caching gain rate, we take **fairness** into consideration.

Existing Works: Fair Caching

- Either specific fairness notions (e.g. proportional fairness) or α -fair utility functions
- They consider different utilities/objectives.
- Hit ratio, e.g. [Dehghan et al. 2016], [Panigraphy et al. 2017], [Chu et al. 2017]
- Storage and fetching cost [Wang et al. 2016], video quality [Avrachenkov et al. 2019], throughput [Bonald et al. 2017], delay [Rezvani et al. 2019]
- They do not capture the multi-hop routing cost. Can be suboptimal in a general cache network
- EX: Requests served with hit ratio 1 at a distant server, in reality, have a lower utility than requests served locally with a lower hit ratio.

This work: To study the fair caching problem in a general cache network, we consider the utility of **caching gain rate**.

Contributions

- Formal statement of the fair caching network model
 - NP-Hard
- Maximizing submodular objective under matroid constraints
 - Greedy Algorithm, 1/2 approximation factor
 - Continuous Greedy, 1-1/e approximation factor
- Stationary Randomized strategy
 - L-method, $(1-1/e)^{1-\alpha}$ approximation factor
- Evaluations
 - Performance under synthetic and real-world network topologies
 - Analysis for the effect of fairness

Overview

□ Problem Formulation

Deterministic Strategy

□ Stationary Randomized Strategy

Evaluation

Overview

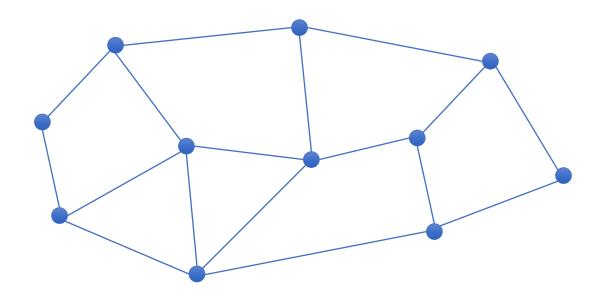
□ Problem Formulation

Deterministic Strategy

Stationary Randomized Strategy

Model: Network

G(V, E)

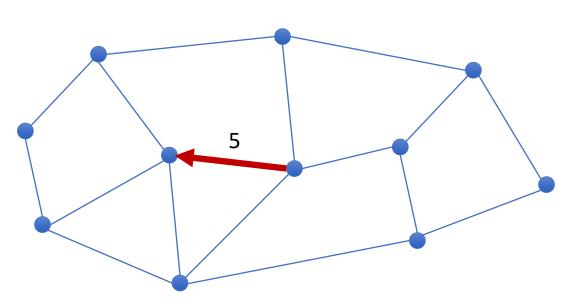


Network represented as a **directed**, **bi-directional** graph G(V, E)

Model: Edge Costs

G(V, E)

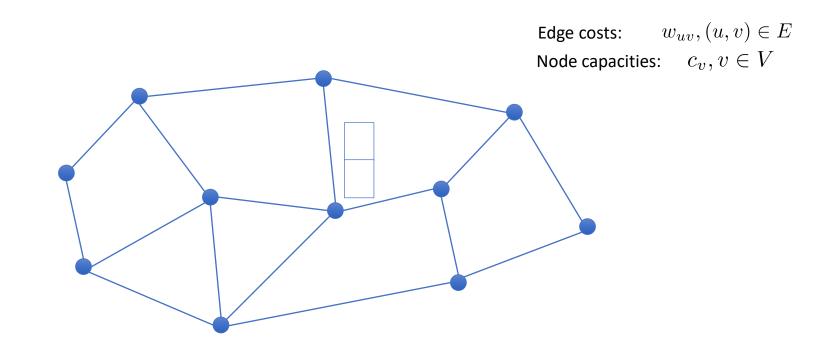
Edge costs: $w_{uv}, (u, v) \in E$



Each edge $(u, v) \in E$ has a **cost/weight** w_{uv}

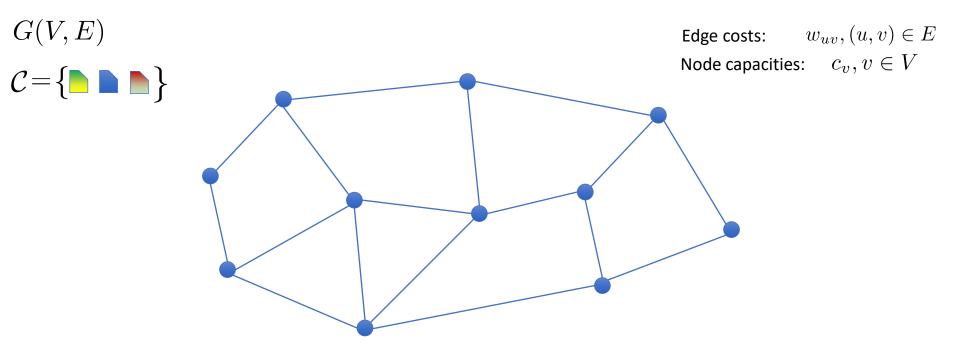
Model: Node Caches

G(V, E)



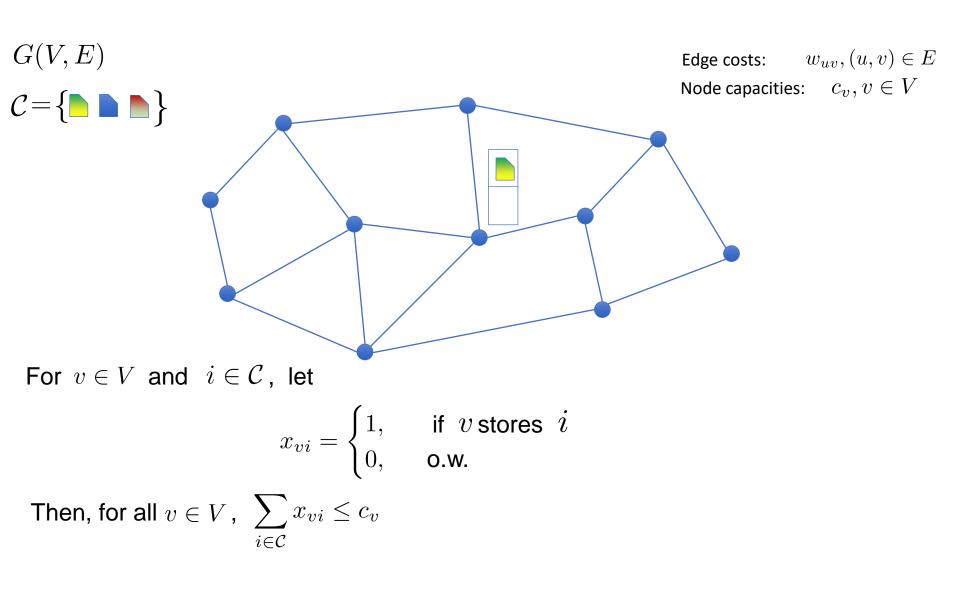
Node $v \in V$ has a cache with capacity $c_v \in \mathbb{N}$

Model: Cache Contents

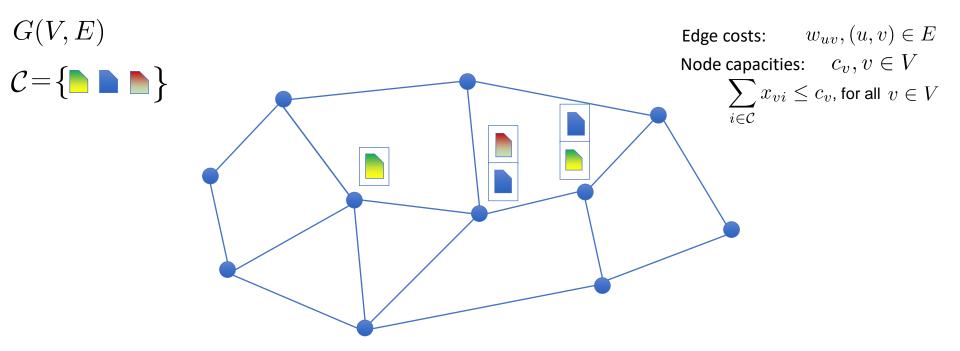


 $\ensuremath{\mathcal{C}}$: the $\ensuremath{\textit{catalog}}$ of equally sized contents

Model: Cache Contents



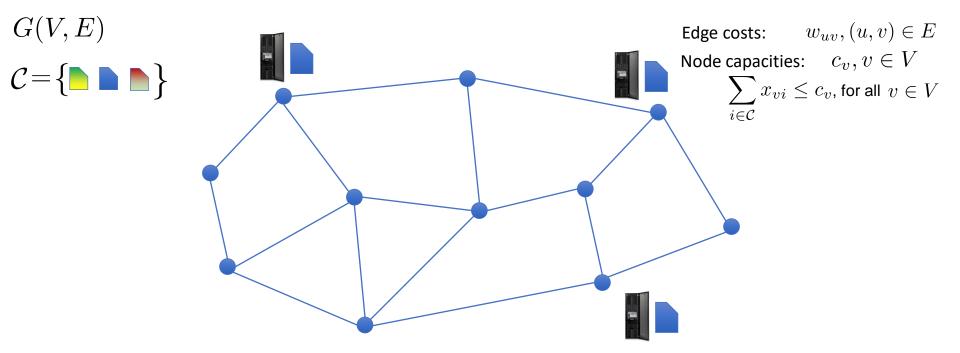
Model: Cache Contents



The global **allocation strategy** is the binary $|V| imes |\mathcal{C}|$ matrix

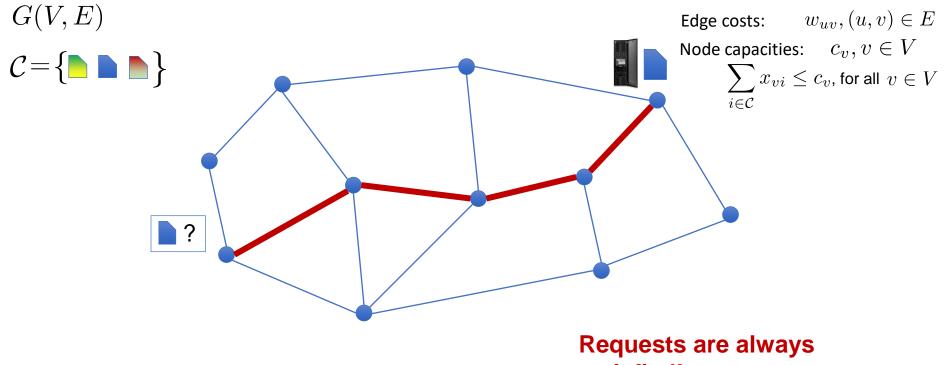
$$X = [x_{vi}]_{v \in V, i \in \mathcal{C}}$$

Model: Designated Servers



For each $i \in C$, there exists a set of nodes $S_i \subset V$ (the designated servers of *i*) that permanently store *i*.

Model: Demand



A **request** is a pair (i, p) such that:

satisfied!

 \Box *i* is an item in C $\square p = \{p_1, \dots, p_K\}$ is a simple path in G such that $p_K \in S_i$.

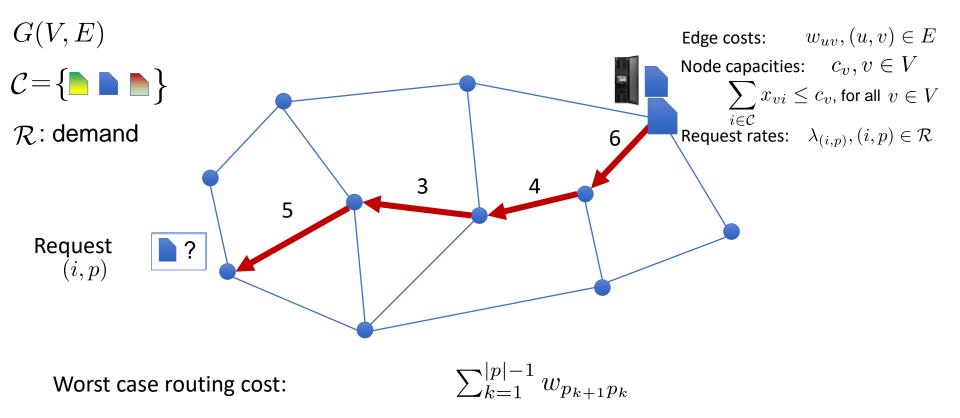
Model: Demand



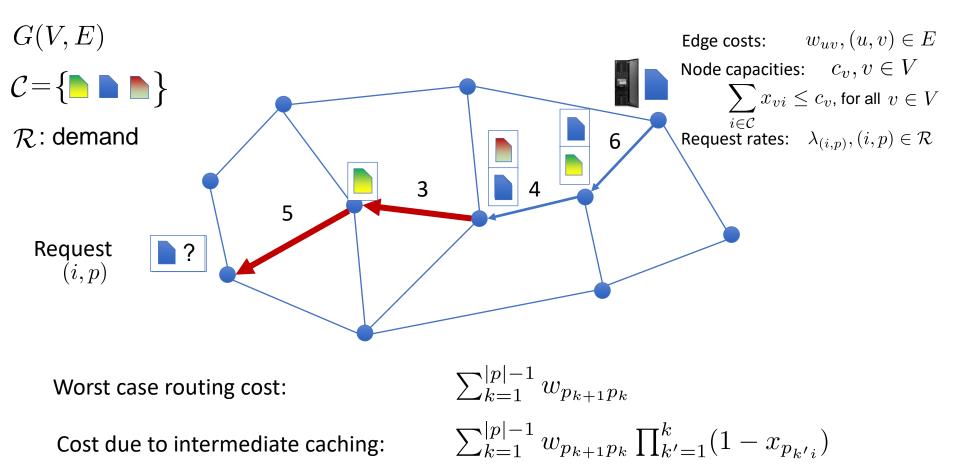
Demand \mathcal{R} : set of all requests (i, p)

The request rate of each request is $\lambda_{(i,p)}$ (number of requests per unit of time)

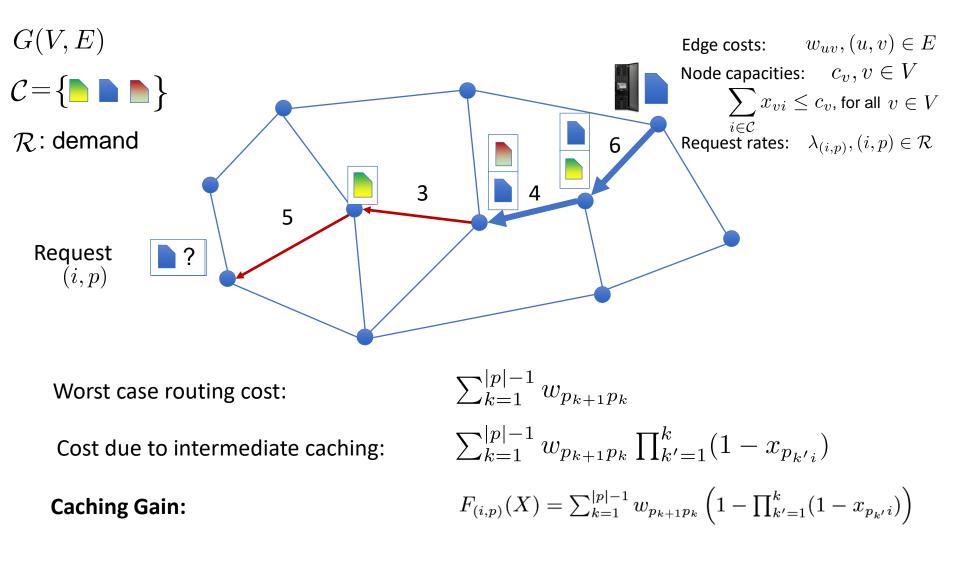
Model: Routing Costs & Caching Gain



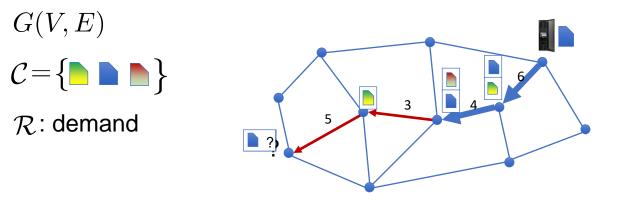
Model: Routing Costs & Caching Gain



Model: Routing Costs & Caching Gain



Utility Maximization



Edge costs:
$$w_{uv}, (u, v) \in E$$

Node capacities: $c_v, v \in V$
 $\sum_{i \in C} x_{vi} \leq c_v$, for all $v \in V$
Request rates: $\lambda_{(i,p)}, (i,p) \in \mathcal{R}$
Caching Gain:

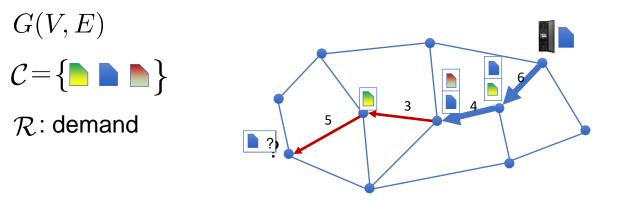
 $\sum_{k=1}^{|p|-1} w_{p_{k+1}p_k} \left(1 - \prod_{k'=1}^k (1 - x_{p_{k'i}}) \right)$

$$U(z) = \begin{cases} \frac{z^{1-\alpha}}{1-\alpha} & \text{when } 0 \le \alpha < 1, \\ \log(z+\epsilon) & \text{when } \alpha = 1, \text{ or} \\ \frac{(z+\epsilon)^{1-\alpha}}{1-\alpha} & \text{when } \alpha > 1, \end{cases}$$

 α -fair utility functions [Mo et al. TON 2000]

- αf fairness f
- α =0,no fairness α =1,proportional fairness $\alpha \rightarrow \infty$,max-min fairness

Utility Maximization



 $\begin{array}{ll} \text{Edge costs:} & w_{uv}, (u,v) \in E \\ \text{Node capacities:} & c_v, v \in V \\ & \displaystyle \sum_{i \in \mathcal{C}} x_{vi} \leq c_v \text{, for all } v \in V \\ \text{Request rates:} & \lambda_{(i,p)}, (i,p) \in \mathcal{R} \end{array}$

Caching Gain:

$$\sum_{k=1}^{|p|-1} w_{p_{k+1}p_k} \left(1 - \prod_{k'=1}^k (1 - x_{p_{k'i}}) \right)$$

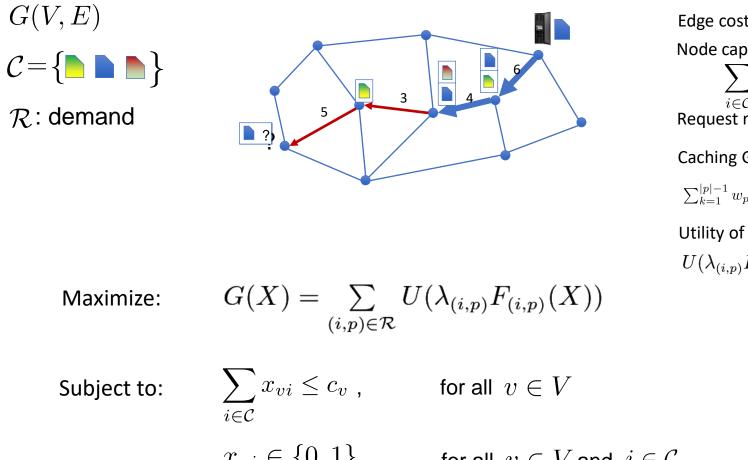
Utility of requests:

 $U(\lambda_{(i,p)}F_{(i,p)}(X)), \ (i,p) \in \mathcal{R}$

Caching gain rate: $\lambda_{(i,p)} \cdot F_{(i,p)}(X), \quad (i,p) \in \mathcal{R}$

Utility of requests: $U(\lambda_{(i,p)}F_{(i,p)}(X)), \ (i,p) \in \mathcal{R}$

Utility Maximization



 $w_{uv}, (u, v) \in E$ Edge costs: Node capacities: $c_v, v \in V$ $\sum x_{vi} \leq c_v$, for all $v \in V$ $i \in \mathcal{C}$ Request rates: $\lambda_{(i,p)}, (i,p) \in \mathcal{R}$

Caching Gain:

$$\sum_{k=1}^{|p|-1} w_{p_{k+1}p_k} \left(1 - \prod_{k'=1}^k (1 - x_{p_{k'i}}) \right)$$

Utility of requests:

 $U(\lambda_{(i,p)}F_{(i,p)}(X)), \ (i,p) \in \mathcal{R}$

$$\sum_{i \in \mathcal{C}} x_{vi} \le c_v$$
, for all $v \in V$
 $x_{vi} \in \{0, 1\}$, for all $v \in V$ and $i \in \mathcal{C}$

 $X \in \mathcal{D}_1$

NP hard, when $\alpha = 0$, [Shanmugam et al. IT 2013]

Overview

Problem Formulation

Deterministic Strategy

Stationary Randomized Strategy

Evaluation

Submodularity

$$\begin{array}{ll} \text{Maximize:} \quad G(X) = \sum_{(i,p)\in\mathcal{R}} U(\lambda_{(i,p)}F_{(i,p)}(X)) \\ \text{s.t.} \quad \sum_{i\in\mathcal{C}} x_{vi} \le c_v \quad \text{for all } v \in V, \\ x_{vi} \in \{0,1\} \quad \text{for all } v \in V, \quad i \in \mathcal{C}. \end{array} \qquad \begin{array}{ll} U(z) = \begin{cases} \frac{z^{1-\alpha}}{1-\alpha} & \text{when } 0 \le \alpha < 1, \\ \log(z+\epsilon) & \text{when } \alpha = 1, \text{ or} \\ \frac{(z+\epsilon)^{1-\alpha}}{1-\alpha} & \text{when } \alpha > 1, \end{cases}$$

Thm:

For all α -fair utility functions, the utility maximization problem is submodular maximization under matroid constraints

Two polynomial approximation algorithms:

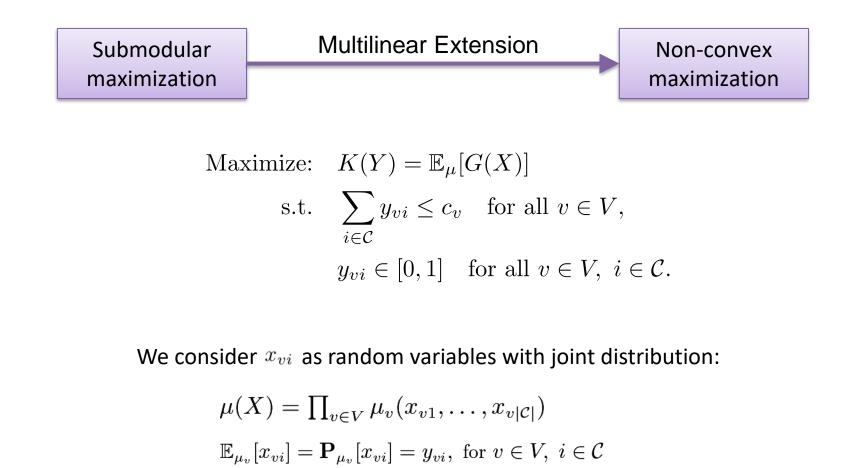
Greedy algorithm produces a solution within 1/2 approximation factor [Calinescu et al. 2007].

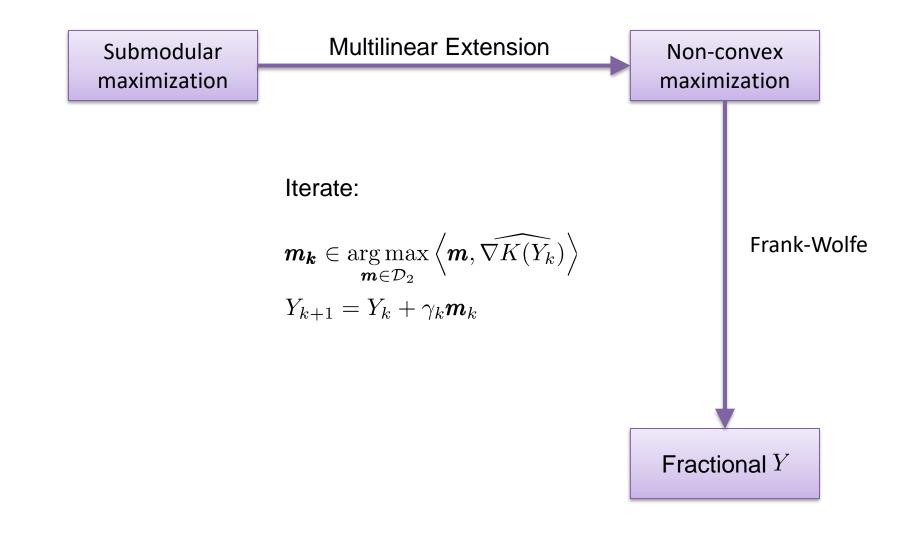
Continuous greedy algorithm produces a solution within 1-1/e approximation factor [Calinescu et al. 2011].

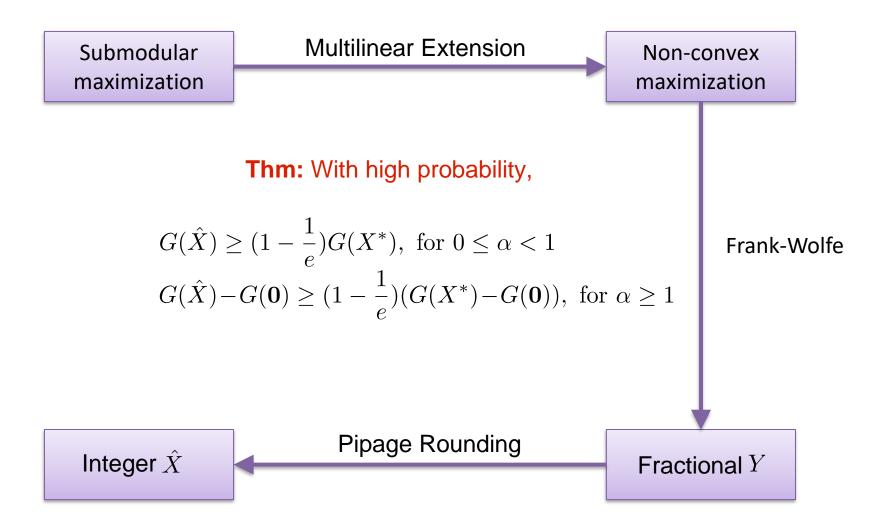
Submodular maximization

Maximize:
$$G(X) = \sum_{(i,p)\in\mathcal{R}} U(\lambda_{(i,p)}F_{(i,p)}(X))$$

s.t.
$$\sum_{i\in\mathcal{C}} x_{vi} \le c_v \text{ for all } v \in V,$$
$$x_{vi} \in \{0,1\} \text{ for all } v \in V, i \in \mathcal{C}.$$







Overview

Problem Formulation

Deterministic Strategy

□Stationary Randomized Strategy

Evaluation

Stationary Randomized Strategy

- We consider a time-slotted system.
- At each time slot, a random caching strategy is sampled from a joint distribution over the feasible set:

$$\mu(X) = \prod_{v \in V} \mu_v(x_{v1}, \dots, x_{v|\mathcal{C}|})$$

• Our problem becomes

Maximize:
$$\sum_{(i,p)\in\mathcal{R}} U(\mathbb{E}_{\mu}[\lambda_{(i,p)}F_{(i,p)}(X)])$$
s.t. supp $(\mu) \in \mathcal{D}_1$,
Distribution

Thm:

There exists a polynomial method that produces a distribution which is within $(1 - 1/e)^{1-\alpha}$ from the optimal in expectation. This approximation factor is better than 1-1/e for utility functions with $\alpha < 1$

Utility of expected caching gain rate

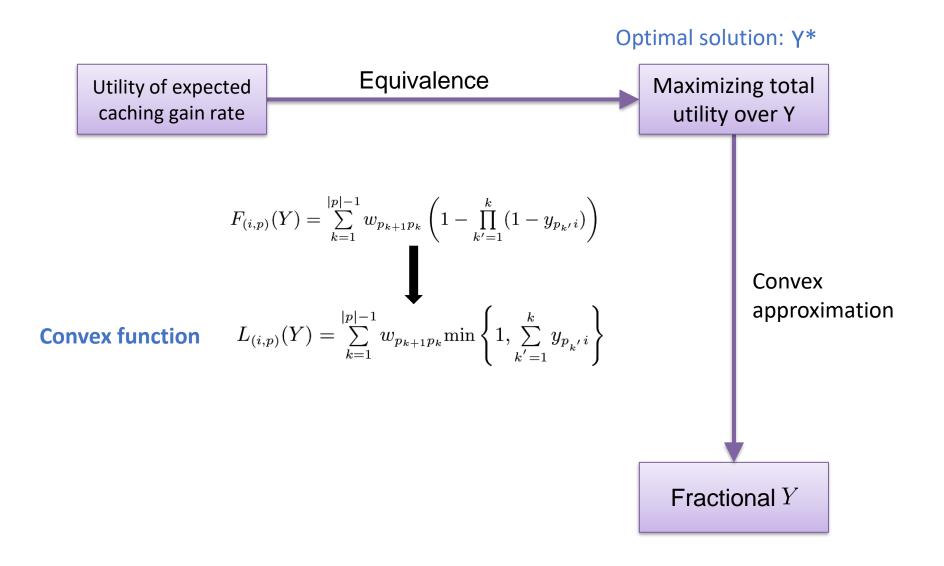
Maximize:
$$\sum_{(i,p)\in\mathcal{R}} U(\mathbb{E}_{\mu}[\lambda_{(i,p)}F_{(i,p)}(X)])$$

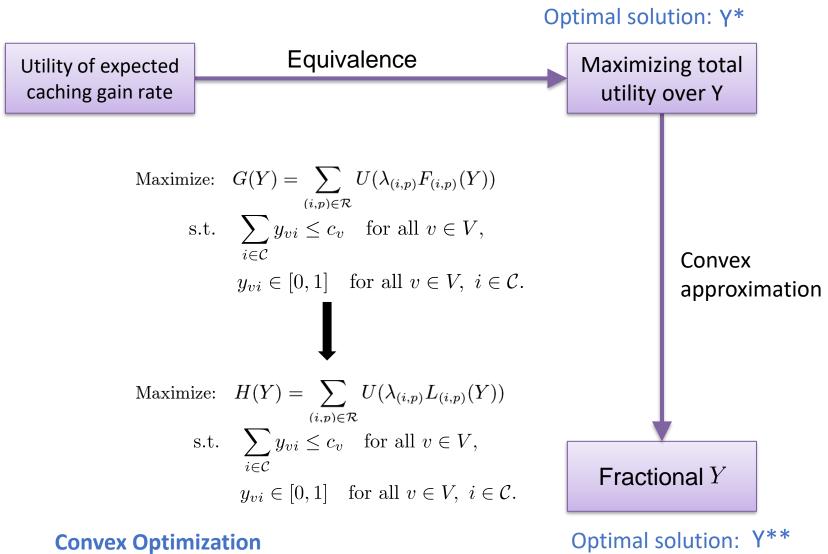
s.t. supp $(\mu) \in \mathcal{D}_1,$

$$\mathbb{E}_{\mu_v}[x_{vi}] = \mathbf{P}_{\mu_v}[x_{vi}] = y_{vi}, \text{ for } v \in V, \ i \in \mathcal{C}$$

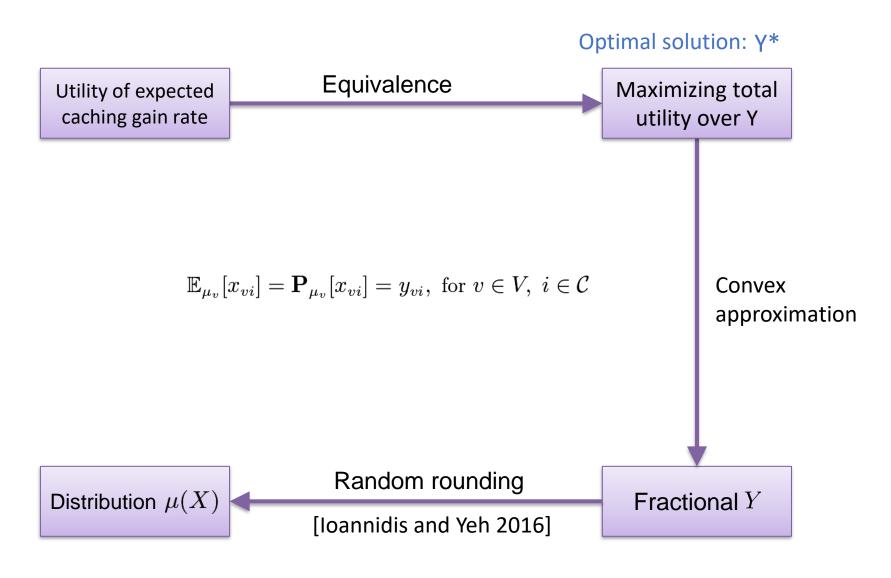
Maximize:
$$G(Y) = \sum_{(i,p)\in\mathcal{R}} U(\lambda_{(i,p)}F_{(i,p)}(Y))$$

s.t.
$$\sum_{i\in\mathcal{C}} y_{vi} \leq c_v \text{ for all } v \in V,$$
$$y_{vi} \in [0,1] \text{ for all } v \in V, \ i \in \mathcal{C}.$$





Convex Optimization



Optimal solution: Y**

Overview

Problem Formulation

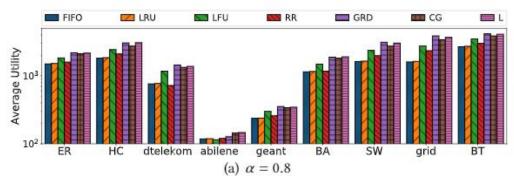
Deterministic Strategy

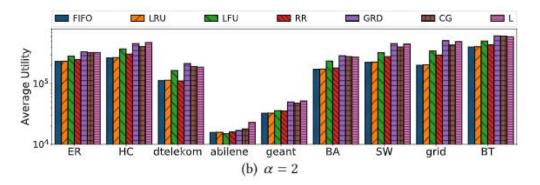
Stationary Randomized Strategy

Evaluation

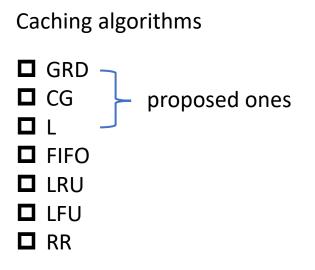
Performance Evaluation

We show the algorithms outperform the baseline caching algorithms (LRU, LFU, FIFO, RR) over different synthetic and real-world topologies.





Graph	V	E	$ \mathcal{C} $	$ \mathcal{R} $	Q	c_v
hypercube	128	896	300	$1\mathrm{K}$	20	3
balanced-tree	341	680	300	$1\mathrm{K}$	20	3
grid-2d	100	360	300	$1\mathrm{K}$	20	3
erdos-renyi	100	1042	300	$1\mathrm{K}$	20	3
small-world	100	491	300	$1\mathrm{K}$	20	3
barabasi-albert	100	768	300	$1\mathrm{K}$	20	3
geant	22	66	10	100	10	2
abilene	9	26	10	100	4	2
dtelekom	68	546	300	$1\mathrm{K}$	20	3



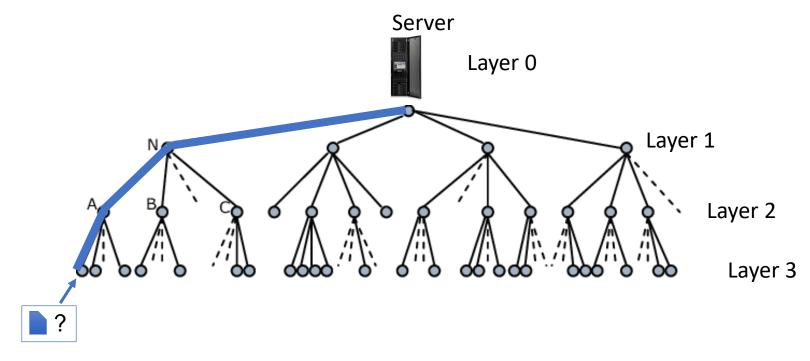
Effect of Fairness: Content Allocation

- Why we want to use this fair caching model? What will this model give us?
- We show that content items with **different popularities** are more fairly stored in the network if we consider the fair caching scheme.

Effect of Fairness: Content Allocation

4-ary balanced tree of height 4:

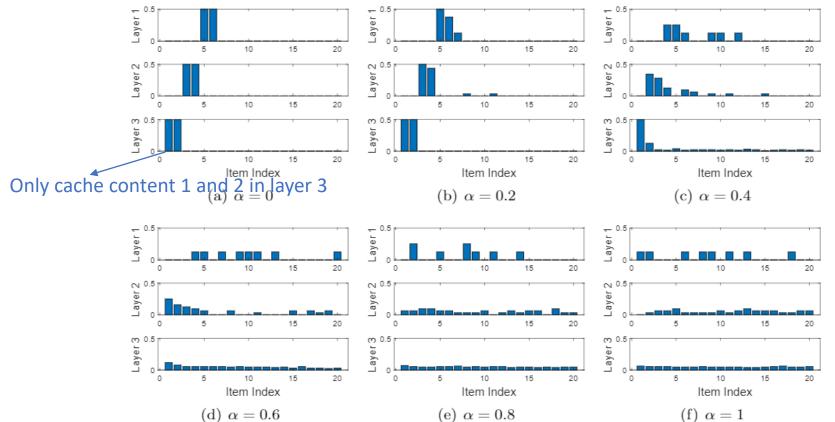
- Requests are generated u.a.r. at the leaf nodes
- The root is the server of all content items
- Content popularities follow Zipf distribution. The content with smaller index has higher popularity



Effect of Fairness: Content Allocation

4-ary tree with height 3:

- **D** Requests enter the network from the leaf nodes
- □ The root is the server of all content items
- Content popularities follow Zipf distribution. The content with smaller index has higher popularity
- The height of a bar is the fraction of total cache space used to store a content



Summary

□ Fair caching model: utility maximization problem

□ We study several polynomial offline solutions

D Content items are more fairly stored in the network

□ Future direction: Distributed and adaptive algorithms?

Thank you!

Submodularity

$$\circ \qquad \lambda_{(i,p)}F_{(i,p)}(X) \qquad \to \qquad U(\lambda_{(i,p)}F_{(i,p)}(X))$$

non-decreasing concave

 $U(\cdot)$

non-decreasing submodular

non-decreasing submodular

$$\begin{split} G(X) &= \sum_{(i,p) \in \mathcal{R}} U(\lambda_{(i,p)} F_{(i,p)}(X)) & \text{monotone and submodular} \\ \sum_{i \in \mathcal{C}} x_{vi} \leq c_v , & \text{for all } v \in V \\ x_{vi} \in \{0,1\}, & \text{for all } v \in V \text{ and } i \in \mathcal{C} \end{split}$$

We are maximizing a monotone submodular function under matroid constraints

Greedy Algorithm

Greedy algorithm produces a solution within 1/2 approximation factor [Calinescu et al. 2007].

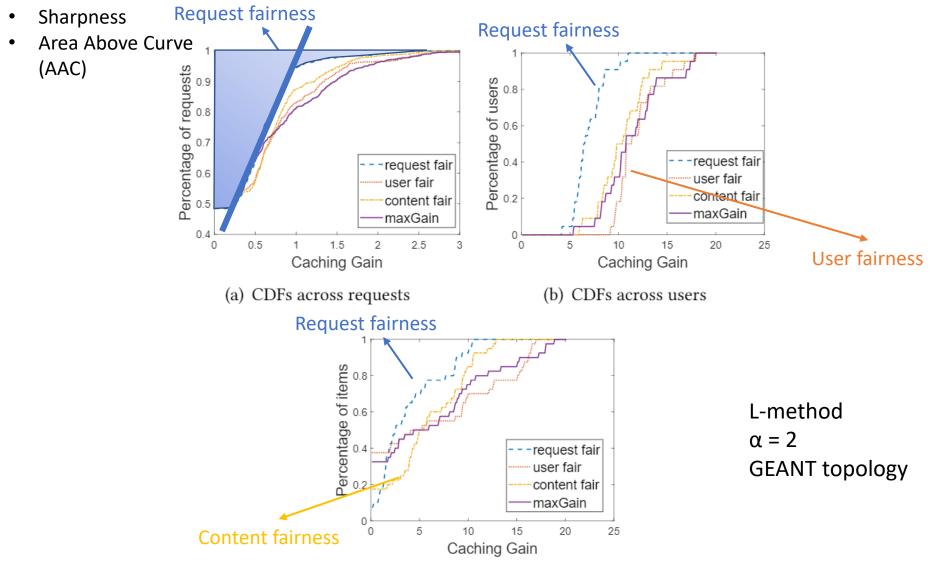
Main idea: In each iteration, select an item to put in the cache of one of the nodes such that the overall utility increment is maximized.

Algorithm	1:	Greedy
-----------	----	--------

Effect of Fairness: Caching Gain

• We confirm that caching gain is more fairly distributed across different requests, content items, and users when we consider **request fairness**, **content fairness**, and user fairness, respectively.

Effect of Fairness: Caching Gain



(c) CDFs across content items