Distribution of Consensus in a Broadcastingbased Consensus-forming Algorithm

Shigeo Shioda

Graduate School of Science and Engineering, Chiba University

November 5th, 2020¹

¹IFIP WG 7.3 Performance 2020 conference (held online)

Background and Purpose

- 2 Formulation of the Problem
- Indamental Equations for the Consensus
 - 4 Consensus of Two Agents
- 5 Consensus of an Infinite Number of Agents

- Formulation of the Problem
- 3 Fundamental Equations for the Consensus
- 4 Consensus of Two Agents
- 5 Consensus of an Infinite Number of Agents

Background and Motivation

- In a consensus-forming algorithm [1], agents initially having different opinions mutually exchange and thereby update their opinions to achieve a consensus.
- In a broadcasting-based consensus-forming algorithm [2], at each discrete time, one agent is chosen randomly to broadcast its opinion to neighbors. Agents receiving an opinion compute the weighted average of their opinions and the received one.
- It is proved that the opinions of the agents almost surely converge to a consensus, but little is known about the statistical properties of the achieved consensus.

[1] M. H. Degroot, "Reaching a consensus," Journal of the American Statistical Association, vol. 69, issue. 345, 1974.

[2] T.C. Aysal, M.E. Yildiz, A.D. Sarwate, and A. Scaglione, "Broadcast gossip algorithms for consensus," IEEE Transactions on Signal processing vol. 57, no. 7, 2009.

Purpose

- To investigate the statistical properties of the consensus in a broadcasting-based consensus-forming algorithm.
- For this purpose,
 - fundamental equations (fixed-point equations) concerning the consensus achieved in the algorithm are derived.
 - based on the derived equations, two extreme cases (consensus forming by two agents and consensus forming by an infinite number of agents) are investigated.

- 3 Fundamental Equations for the Consensus
- 4 Consensus of Two Agents
- 5) Consensus of an Infinite Number of Agents

Formulation of the Problem

- N agents interact over a directed graph with adjacency matrix $A = \{a_{ij}\}.$
- At each discrete time, one agent broadcasts its opinion. The probability that agent i broadcasts its opinion at a given time is denoted by p_i > 0.
- Opinions of agents at time n (= 0, 1, 2, ...) is denoted by $\boldsymbol{x}(n) \stackrel{\text{def}}{=} (x_0(n), \ldots, x_{N-1}(n))$, where $x_i(n) \in \mathbb{R}$ is the opinion of agent i.

Formulation of the Problem

• Opinion updating at time n is expressed by

$$\boldsymbol{x}(n+1)^{\top} = Q^{(e_n)} \boldsymbol{x}(n)^{\top},$$

where e_n denotes the agent broadcasting its opinion at time n and $Q^{(k)} = \{q_{ij}^{(k)}\}$ is the matrix with the following elements:

$$q_{ij}^{(k)} = \begin{cases} 1 - w_{ki}a_{ki}, & i = j\\ w_{ki}a_{ki}, & i \neq j, j = k\\ 0. & \text{otherwise} \end{cases}$$

• w_{ji} is a parameter indicating the degree to which agent j influences the opinion of agent i.

Indamental Equations for the Consensus

4 Consensus of Two Agents

Consensus of an Infinite Number of Agents

Additional Assumptions and Notation

• Assume a mesh and a homogeneous network between agents.

$$\forall i, j \ (i \neq j), \quad w_{ij} = w, \quad a_{ij} = 1.$$

• X denotes the opinion broadcasted at time 0. Its distribution is given by

$$P(X = x_i(0)) = p_i, \quad i = 1, \dots, N.$$

• The consensus is denoted by X_{∞} .

Fundamental Equations for the Consensus

Theorem 4.1

 X_∞ satisfies the following fixed-point equation:

$$X_{\infty} \stackrel{d}{=} (1 - w)X_{\infty} + wX.$$

The first and second terms on the right-hand side are statistically independent.

Theorem 4.2

$$X_{\infty} \stackrel{d}{=} w \sum_{k=0}^{\infty} (1-w)^k X_k,$$

where X_0, X_1, \ldots are independent random variables and are identically distributed with X.

Shioda (Chiba University, Japan) Distribution of Consensus in a Consensus-forming Algorithm Nov., 2020 11 / 26

Outline of the Proof of Theorem 4.1

Consensus X_∞ can be expressed as

$$X_{\infty} = \pi \left(\prod_{n=0}^{\infty} Q^{(e_n)}\right) \boldsymbol{x}^{\mathsf{T}}, \quad \prod_{n=0}^{\infty} Q^{(e_n)} \stackrel{\text{def}}{=} \lim_{m \to \infty} Q^{(e_m)} \dots Q^{(e_0)}.$$

where $x \stackrel{\text{def}}{=} x(0)$ is the initial opinion and π is the eigenvector of $\sum_{k=1}^{N} p_k Q^{(k)}$. We see

$$Q^{(e_0)} \boldsymbol{x}^{\mathsf{T}} = (1 - w) \boldsymbol{x}^{\mathsf{T}} + w x_{e_0} \boldsymbol{1}^{\mathsf{T}}, \quad \left(\prod_{n=1}^{\infty} Q^{(e_n)}\right) \boldsymbol{1}^{\mathsf{T}} = \boldsymbol{1}^{\mathsf{T}}.$$

Thus,

$$X_{\infty} = (1 - w)\boldsymbol{\pi} \left(\prod_{n=1}^{\infty} Q^{(e_n)}\right) \boldsymbol{x}^{\mathsf{T}} + w x_{e_0}.$$

Here, $\pi \left(\prod_{n=1}^{\infty} Q^{(e_n)}\right) x^{\mathsf{T}}$ is the consensus reached when the opinions at time 1 are equal to x, which is equal to X_{∞} in distribution, while x_{e_0} is equal to X in distribution. These observations complete the proof.

Shioda (Chiba University, Japan) Distribution of Consensus in a Consensus-forming Algorithm Nov., 2020 12 / 26

- Formulation of the Problem
- 3 Fundamental Equations for the Consensus
- 4 Consensus of Two Agents
- 5 Consensus of an Infinite Number of Agents

Additional Assumption and Notation

- Initial opinion of agent 0 is 0 and initial opinion of agent 1 is 1.
- $p_0 = p_1 = 0.5$ (agents 0 and 1 broadcast their opinions with probability 0.5 at each discrete time.)
- Define the mapping $f_w: [0,1) \rightarrow [0,1)$,

$$y = \sum_{k=1}^{\infty} \frac{\epsilon_k(y)}{2^k} \longrightarrow f_w(y) = w \sum_{k=1}^{\infty} (1-w)^{k-1} \epsilon_k(y).$$

Note that f_w is the inverse of the generalized Cantor function when w > 0.5.

Properties of $f_w(y)$

• When $w \neq 0.5$, $f_w(y)$ is discontinuous at $y \in \Lambda$ and continuous on $[0,1) \setminus \Lambda$, where

$$\Lambda \stackrel{\text{def}}{=} \{ y_{n,k} : n = 1, 2, \dots, \ k = 0, 1, \dots, 2^{n-1} - 1 \}, \quad y_{n,k} \stackrel{\text{def}}{=} \frac{2k+1}{2^n}.$$

When w = 0.5, $f_w(y) = y$ and thus $f_w(y)$ is continuous on [0, 1).

- When $w \ge 0.5$, $f_w(y)$ is strictly increasing.
- When w < 0.5, $f_w(y)$ jumps downward at discontinuous points.

Main Results

Theorem 5.3

$$P(X_{\infty} \le x) = \mu_l \left(f_w^{-1} \left([0, x] \right) \right),$$

where μ_l denotes the Lebesgue measure.

Theorem 5.4

- If $w \leq 0.5$, then $X_{\infty}(\Omega) = [0,1)$ and any $z \in [1,0)$ could be an outcome of X_{∞} .
- If w > 0.5, then $\mu_l(X_{\infty}(\Omega)) = 0$ and the Lebesgue measure of the set of the possible outcomes of X_{∞} is zero.

Numerical Examples

• Shape of the distribution function of X_{∞} depends greatly on w.

- Background and Purpose
 - 2) Formulation of the Problem
- 3 Fundamental Equations for the Consensus
- 4 Consensus of Two Agents
- 5 Consensus of an Infinite Number of Agents

Assumptions and Definitions

- Assume that X (opinion broadcasted at time 0) is a continuous random variable.
- This assumption corresponds to the case of letting the number of agents go to infinity.

Definition 6.1

Two random variables Z_1 and Z_2 are said to be of the same type if there exist constants a > 0 and $b \in \mathbb{R}$ with $Z_2 \stackrel{d}{=} aZ_1 + b$.

Definition 6.2

A random variable Z is stable if, for any positive constants a and b, $aZ_1 + bZ_2$ is the same type as Z, where Z_1 and Z_2 are independent copies of Z.

Consensus of an Infinite Number of Agents

Theorem 6.3

If X is stable, the consensus X_{∞} is of the same type as X.

- Outline of the proof.
 - If X is stable, $w \sum_{k=0}^{\infty} (1-w)^k X_k$ is of the same type as X.
 - Thus, applying Theorem 4.2 completes the proof.
- A closed-form expression of the distribution of X_∞ can be derived if X follows a Gaussian, Cauchy, or Lévy distribution.

Case 1: Initial Opinions Follow a Gaussian Dist.

• If X follows a Gaussian distribution with mean μ and variance σ^2 , the consensus also follows a Gaussian distribution with mean μ and variance $\sigma_{\infty}^2 = \frac{w\sigma^2}{2-w}$, where

w = 0.2

Shioda (Chiba University, Japan)

Distribution of Consensus in a Consensus-forming Algorithm

Case 2: Initial Opinions Follow a Cauchy Dist.

• If X follows a Cauchy distribution, then the consensus is identically distributed with the initial opinion.

Case 3: Initial Opinions Follow a Lévy Dist.

• If X follows a Lévy distribution with location and scale parameters δ and γ , the consensus also follows a Lévy distribution with location and scale parameters δ and $\gamma_{\infty} \stackrel{\mathrm{def}}{=} \frac{\gamma w}{2-w-2\sqrt{1-w}}$, where

Shioda (Chiba University, Japan)

Distribution of Consensus in a Consensus-forming Algorithm

- 2) Formulation of the Problem
- 3 Fundamental Equations for the Consensus
- 4 Consensus of Two Agents
 - Consensus of an Infinite Number of Agents

- The statistical properties of the consensus in a broadcasting-based consensus-forming algorithm were investigated.
- In the infinite-number-of-agents case, if the initial opinions follow a stable distribution, then the consensus also follows a stable distribution.
- A closed-form expression for the distribution of the consensus exists if the initial opinions follow a Gaussian, Cauchy, or Lévy distribution.

Thank you very much.