REVENUE SHARING ON THE INTERNET: A CASE FOR GOING SOFT ON NEUTRALITY REGULATIONS

Fehmina Malik (IEOR, IIT Bombay, Mumbai, India) Manjesh K. Hanawal (IEOR, IIT Bombay, Mumbai, India) Yezekael Hayel (LIA/CERI, University of Avignon, Avignon, France) Jayakrishnan Nair (EE Dept., IIT Bombay, Mumbai, India)

INTRODUCTION

- Increased usage of data services
- Internet service providers (ISPs) upgrade their network infrastructure
 - > e.g., caching technologies
- ISP unable to recoup their investment costs
- Revenues of CPs grow steady (subscription and advertising based)
- This asymmetry creates a pressure for surplus transfer from CPs to ISPs (Netflix-Comcast saga of 2014)

- Incentive for CPs: better QoS \Rightarrow higher demand \Rightarrow higher revenue
- For example:
 - Network Operator leases its edge caches to a CP
 - Netflix places local cache within the data centers of partner ISPs
 - CPs like Google and Facebook subsidize ISP costs to provide settlement-free points of presence (PoPs)

PROBLEM

- Revenue sharing arrangements between multiple CPs and single ISPs that connects end users to the content of the CPs.
- We model the interaction as Stackelberg game with multiple leaders (CPs) and single follower (ISP).
- We consider two regimes:
 - ISP can make a different, customized level of effort for each CP (non-neutral)
 - \geq ISP is constrained to make equal efforts for all CPs (neutral).

 a_i : Effort by *ISP* for *CP*_i

Stackelberg Formulation

 r_i : Monetization rate of CP_i β_i : sharing proportion by CP_i

NEUTRALVS NON-NEUTRAL REGIME

NeutralNon-neutralISP must put equal effort (investment)
for all CPsISP may put different effort
(investment) for each CP
$$a_i = a \forall i = 1, 2, ..., n$$
 $a_1 \neq a_2 \neq \cdots \neq a_n$ is allowed $a_i^N(\beta) = \max\left(\frac{\sum_{i=1}^n \beta_i r_i}{nc} - 1, 0\right)$ $a_i^N(\beta_i) = \max\left(\frac{\beta_i r_i}{c} - 1, 0\right)$

NEUTRAL V/S NON-NEUTRAL REGIME (SYMMETRIC CASE)

- $r_1 = r_2 \dots = r_n$
- ***** For $n \ge 2$, at equilibrium:
- CPs share a higher fraction of their revenue with the ISP in the nonneutral regime.
- The effort by the ISP for each CP is higher in the non-neutral regime.
- The surplus of each CP is higher in the non-neutral regime.
- The surplus of the ISP is higher in the non-neutral regime.
- Neutrality is sub-optimal for all parties when the CPs are symmetric.

WHY EVERYONE SUFFERS IN NEUTRALITY?

Tragedy of the commons in neutral regime:

- non-cooperative framework resulting in equilibria that are worse for all players
- benefit of additional investment of CP shared across all CPs
- this induces CPs to commit smaller revenues share to ISP

THE EFFECT OF NUMBER OF CPS (SYMMETRIC CASE)

- In the neutral regime, the non-zero equilibrium satisfies the following properties.
- β^N is a strictly decreasing function of $n_{...}$
- The effort by the ISP for each CP (a^N) is a strictly decreasing function of n even though the total effort (na^N) by the ISP is a strictly increasing function of n.
- The surplus of each CP is a strictly decreasing function of n, $\lim_{n \to \infty} U_{CP_i}^N(n) = 0$.
- The surplus of the ISP is eventually strictly decreasing in n, $\lim_{n \to \infty} U_{ISP}^N(n)$.
- With increasing n, the surplus from additional contribution by CP gets 'split' further
- Disincentives CPs from offering a significant fraction revenue share

ASYMMETRIC CPS

- $r_i \neq r_j$ for $i \neq j$
- We focus on two asymmetric CPs; $r_1 > r_2$

Utility comparison

- ***** Fix $r_2 > 0$. We have
- For all $r_1 > r_2$, CP_1 is better off in the non-neutral regime
- For all $r_1 \ge r_1^*$, CP_2 is better off in the neutral regime

✤ There exist $r_1^b > r_1^*$, such that for all $r_1 > r_1^b$ the ISP's utility is higher in the non-neutral regime.

* Social Utility is higher in the non-neutral regime.

WHY NEUTRALITY BENEFITS ONLY NON-DOMINANT CP?

Free riding in neutral regime:

- Under higher asymmetry, non-dominant CP free-rides on the contributions of the dominant CP.
- Neutrality forces dominant CP to pay for capacity investments that also benefit the non-dominant CP.

SOFT NEUTRALITY

- To overcome free riding effect.
- ISP is allowed to differentiate between CPs to a limited extent
- Regulator specifies a threshold $\rho \in (0,1)$ such that the ISP is constrained to satisfy $\min(a_i) \ge \max(a_i) : a \in (0,1)$

$$\min_{1 \le i \le n} (a_i) \ge \rho \max_{1 \le i \le n} (a_i); \ \rho \in (0,1)$$

BARGAINING

- To overcome Tragedy of commons effect.
- Given ISP behavior under the soft-neutrality, CPs can interact and bargain to arrive at a vector (β_1^B, β_2^B)

$$\max_{\beta_1,\beta_2 \in [0,1]} (U_{CP_1} - d_{CP_1}^{SN}) (U_{CP_2} - d_{CP_2}^{SN})$$

 Disagreement point: CP utilities when they act non-cooperatively, i.e., the Nash-equilibrium between the CPs.

Asymmetric CPs:

- Soft neutrality (overcome free riding by non-dominant CP):
 - Improvement in utility for dominant CP, ISP and social utility.
- Soft-neutrality + Bargaining (overcome Tragedy of common effect by cooperative nature of bargaining):
 - Further increase in utilities.
 - > for certain range of ρ , ISP utility is eve higher than the non-neutral regime
 - > for certain range of ρ , social utility closely matches that of the non-neutral regime

Symmetric CPs:

- Soft-neutrality + Bargaining:
 - Utilities matches with that of non-neutral equilibrium.

ACKNOWLEDGEMENT

 We thank CEFIPRA (Indo-French Centre for the Promotion of Advanced Research) for funding this work under the Collaborative Scientific Research Programme (project 5702-1).

THANKYOU