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▪ Input-queued switches are widely used in computer and communication networks

▪ 3 × 3 Input-queued switch:

Input-Queued Switch
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▪ Consider input-queued switch with 𝑛 input ports and 𝑛 output ports

▪ Each input port has queue associated with every output port that stores packets 

waiting to be transmitted

▪ Simultaneous transmission of packets is possible only from certain subsets of the 

queues, as defined by following constraints:

▪ Every input port can transmit at most one packet

▪ Every output port can receive at most one packet

▪ We call the subsets of queues that satisfies these constraints basic schedules

Input-Queued Switch
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▪ Main focus of previous research: Throughput optimality

▪ E.g.: Tassiulas and Ephremides (1992); McKeown, Anantharam, and Walrand (1996)

▪ Study of delay optimality focused on MaxWeight and heavy traffic regime

▪ E.g.: Kang and Williams (2012); Maguluri and Srikant (2016); Lu, Maguluri, Squillante, and Suk (2018b)

▪ Optimal policy obtained in 2x2 case, reveals some different structures (e.g. switching curve)

▪ Lu,  Maguluri, Squillante, and Suk (2018a) for original stochastic system under general linear-cost objective function

▪ These optimal results and structures can be generalized to the 𝑛 × 𝑛 switch only in special cases, and not in general

▪ Fluid models

▪ E.g.: Shah and Wischik (2012) and, more recently, Sharifnassab, Tsitsiklis, and Golestani (2020) on fluid models 

under MaxWeight

▪ General linear fluid flow cost structures

Analysis of the Input-Queued Switches
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▪ Stochastic Model of Input-Queued Switch

▪ Fluid Model for Input-Queued Switch and Optimal Control Problem

▪ Difficulty of Optimal Control Problem

▪ Optimal Control Algorithm

▪ Critical Threshold

▪ Main Theoretical Results

▪ Stability

▪ Optimality

▪ Computational Experiments

▪ Conclusion

Overview
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▪ Queue with input port 𝑖, output port 𝑗 is indexed by 𝑖, 𝑗 ∈ 𝕁 ≔ 𝑛 × [𝑛]

▪ Time is slotted and denoted by a nonnegative integer 𝑡 ∈ ℤ+ ≔ 0,1, …

▪ Service time of packets is 1 time unit

▪ At each time 𝑡, scheduling policy selects a basic schedule such that packet from 

nonempty queue in the schedule is served

▪ Basic schedule formally depicted by 𝑛2-dimensional binary vector 𝑠 = 𝑠𝑖𝑗 𝑖𝑗∈[𝑛]

such that 𝑠𝑖𝑗 = 1 if queue (𝑖, 𝑗) is in schedule, and 𝑠𝑖𝑗 = 0 otherwise

▪ Set of all basic schedules 𝕀:

Stochastic Model
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▪ 𝒬𝑖𝑗 𝑡 : length of queue (𝑖, 𝑗) at beginning of 𝑡-th slot;  𝒬(𝑡) = {𝒬𝑖𝑗(𝑡)}

▪ 𝒜𝑖𝑗(𝑡) ∈ ℤ+: number of arrivals to queue (𝑖, 𝑗) up to time 𝑡, where

▪ 𝒜𝑖𝑗 𝑡 + 1 −𝒜𝑖𝑗 𝑡 i.i.d. with 𝔼 𝒜 𝑡 + 1 −𝒜 𝑡 = 𝜆, 

▪ arrival rate vector 𝝀 ∈ ℝ+
|𝕁|

▪ 𝒟𝑠 𝑡 : Cumulative number of time slots devoted to basic schedule 𝑠 until 𝑡:

𝒟(𝑡) = 𝑡, 𝒟 𝑡 + 1 − 𝒟(𝑡) = 1

▪ Queueing dynamics:

𝒬 𝑡 = 𝒬0 +𝒜 𝑡 − 𝒟 𝑡 𝐴

where 𝐴 is the 𝕀 × 𝕁 –dimensional binary schedule-queue adjacency matrix: 

𝐴𝑠, 𝑖,𝑗 = 𝑠𝑖𝑗

Dynamics of Stochastic Model
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Consider 𝑟-scaled process: 𝒬𝑟 𝑡 ,𝒜𝑟 𝑡 , 𝒟𝑟(𝑡) ≔
1

𝑟
𝒬 𝑟𝑡 ,

1

𝑟
𝒜 𝑟𝑡 ,

1

𝑟
𝒟 𝑟𝑡

▪ lim
𝑟→∞

sup
0≤𝑡≤𝑇

𝒜𝑟 𝑡 − 𝜆𝑡 = 0 , 𝒟𝑖𝑗
𝑟 𝑡′ − 𝐷𝑖𝑗

𝑟 𝑡 ≤ (𝑡 − 𝑡′)

Convergent subsequence of 𝒬𝑟 𝑡 converges to Fluid Model 𝑞 𝑡 such that

ሶ𝑞 𝑡 = 𝜆 − 𝜎 𝑡 𝐴,

𝑞 𝑡 ≥ 0, 𝜎 𝑡 = 1, 𝜎 𝑡 ≥ 0

Fluid-level schedule is a convex combination of basic schedules

𝑞 𝑡 , 𝜎 𝑡 : Fluid-level admissible pair 

𝜎 𝑡 : Fluid-level admissible policy

Input-Queued Switch Scheduling: Fluid Model
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Fluid Model Optimal Control Problem

▪ 𝑐 = 𝑐𝑖𝑗 : cost coefficient vector

▪ Define total discounted queue-length cost over the entire time horizon under 

a fluid-level admissible policy {𝜎 𝑡 ∶ 𝑡 ∈ ℝ+} with initial state 𝒒0:

Fluid Optimal Control Problem

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 න

0

∞

𝑒−𝛽𝑡𝑐 ⋅ 𝑞 𝑡 𝑑𝑡

ሶ𝑞 𝑡 = 𝜆 − 𝜎 𝑡 𝐴

𝑞 𝑡 ≥ 0

𝜎 𝑡 ≥ 0

𝜎 𝑡 = 1
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Difficulty of Optimal Control Problem

▪ While optimal control framework enables with relative ease derivation of 

optimal policies for fluid models of basic queueing networks, situation for 

input-queued switches is quite different and much more difficult

▪ For example, arrival rate vector 𝝀 and initial queue length 𝒒0 s.t. 𝜆𝑖𝑗 = 0, ∀𝑖 ∈

𝑛 , ∀𝑗 ∈ [𝑛]\ 1 , then equivalent to 𝑛 parallel queues with one server

In this case, 𝑐𝜇-policy well-known to be optimal policy that minimizes 

discounted total cost over infinite horizon in both stochastic and fluid model 

However, 𝑐𝜇-policy is not always stable even in the fluid limit model

▪ As another example, MaxWeight Scheduling Algorithm is stable
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Example: Unstable Case of 𝑐𝜇-policy

▪ Maximum Basic Schedules:

{(1,1),(2,3)}, {(1,2),(2,1)}, 

{(1,2),(2,3)}

▪ 𝑐𝜇-policy: 

0.45 × 1,2 , 2,3
+0.45 × 2,1
+0.1 × { 1,1 }

▪ 𝑐𝜇-policy is not always stable even 

in fluid limit model

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

0.45

0.45

0.45

0.45

𝑐12 = 1.0

𝑐11 = 0.1

𝑐21 = 0.5

𝑐23 = 1.0
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▪ For 𝑞 and 𝜏 ∈ ℝ+, define

• 𝐿𝑃(𝑞, 𝜏) maximizes the weighted outflow, subjective to feasibility constraint

• 𝜏 : the multiplier of the constraint 𝜎(𝑡) = 1

Associated LP(𝒒, 𝝉) 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐴𝑐 ⋅ 𝜎 − 𝜏 𝜎

𝜎𝐴 𝑖𝑗 ≤ 𝜆𝑖𝑗 ∀ 𝑖, 𝑗 𝑤𝑖𝑡ℎ 𝑞𝑖𝑗 = 0

𝜎 ≥ 0

Optimal Control Algorithm: Critical Threshold
Fluid Optimal Control Problem

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 න

0

∞

𝑒−𝛽𝑡𝑐 ⋅ 𝑞 𝑡 𝑑𝑡

ሶ𝑞 𝑡 = 𝜆 − 𝜎 𝑡 𝐴

𝑞 𝑡 ≥ 0

𝜎 𝑡 ≥ 0

𝜎 𝑡 = 1
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▪ For 𝑞 and 𝜏 ∈ ℝ+, define

▪ If ∃𝜎∗ an optimal solution such that 𝜎∗ = 1, 𝜏 is called a critical threshold 

of state 𝑞

Associated LP(𝒒, 𝝉) 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐴𝑐 ⋅ 𝜎 − 𝜏 𝜎

𝜎𝐴 𝑖𝑗 ≤ 𝜆𝑖𝑗 ∀ 𝑖, 𝑗 𝑤𝑖𝑡ℎ 𝑞𝑖𝑗 = 0

𝜎 ≥ 0

Optimal Control Algorithm: Critical Threshold
Fluid Optimal Control Problem

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 න

0

∞

𝑒−𝛽𝑡𝑐 ⋅ 𝑞 𝑡 𝑑𝑡

ሶ𝑞 𝑡 = 𝜆 − 𝜎 𝑡 𝐴

𝑞 𝑡 ≥ 0

𝜎 𝑡 ≥ 0

𝜎 𝑡 = 1

Theorem

There always exists a critical threshold for any state 𝑞.

The critical thresholds can be found via a set of search algorithms.
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Main Results: Optimal Control Algorithm

▪ Algorithm 4: optimal control algorithm

▪ Starting at any q, find the critical threshold 𝜏
▪ Follow the allocation rule from LP(𝒒,𝝉) until 

one of the queues reaches zero;

▪ Repeat

▪ Algorithm 3 is the mega-algorithm for using 

Algorithm 1 and 2 to obtain the critical threshold
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▪ If 𝑞𝑖𝑗 ≠ 0 for all 𝑖, 𝑗

▪ Critical threshold 𝜏 = max 𝑐 ⋅ 𝑠 ∶ 𝑠 ∈ 𝕀 and 𝜎∗ = argmax 𝑐 ⋅ 𝑠 ∶ 𝑠 ∈ 𝕀

▪ Coincides with the 𝑐𝜇-rule

▪ In the 3x3 case where 𝑞12 = 𝑞21 = 0 and 𝑞11 = 𝑞23 > 0, the critical threshold 

is given by 𝜏 = 0 and the optimal policy is given by: 0.45 for (1,2) and (2,1); 

0.55 for (1,1) and (2,3)

Associated LP(𝒒, 𝝉) 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐴𝑐 ⋅ 𝜎 − 𝜏 𝜎

𝜎 ≥ 0

Critical Threshold: Example
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Main Results: Optimal Control Algorithm

▪ At state 𝑞, use optimal solution 𝜎∗ of associated LP such that 𝜎∗ = 1 for 

critical threshold 𝜏

Theorem (Stability or Throughput-Optimality)

If σ𝑖 𝜆𝑖𝑗 < 1 and σ𝑗 𝜆𝑖𝑗 < 1 for all 𝑖, 𝑗, the above set of algorithms empty the 

system in finite time

Theorem (Optimality)

If σ𝑖 𝜆𝑖𝑗 < 1 and σ𝑗 𝜆𝑖𝑗 < 1 for all 𝑖, 𝑗, the above set of algorithms provides

an optimal solution to the Fluid Optimal Control Problem
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Main Results: Optimal Control Algorithm

▪ At state 𝑞, use optimal solution 𝜎∗ of associated LP such that 𝜎∗ = 1 for 

critical threshold 𝜏

Theorem (Stability or Throughput-Optimality)

If σ𝑖 𝜆𝑖𝑗 < 1 and σ𝑗 𝜆𝑖𝑗 < 1 for all 𝑖, 𝑗, the above set of algorithms empty the 

system in finite time

Main idea: Caratheodory’s Theorem key to construct a Lyapunov function
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Main Results: Optimal Control Algorithm

▪ At state 𝑞, use optimal solution 𝜎∗ of associated LP such that 𝜎∗ = 1 for 

critical threshold 𝜏

Theorem (Optimality)

If σ𝑖 𝜆𝑖𝑗 < 1 and σ𝑗 𝜆𝑖𝑗 < 1 for all 𝑖, 𝑗, the above set of algorithms provides 

an optimal solution to the Fluid Optimal Control Problem

Main idea: verify the necessary and sufficient condition for Pontryagin’s

Maximum Principle 
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Necessary and Sufficient Conditions 

Admissible policy 𝜎∗(𝑡) is optimal solution to Fluid Optimal Control Problem 

if ∃𝑝 𝑡 , 𝜂(𝑡) such that 

▪ 𝜎∗ 𝑡 ∈ argmax 𝜎𝐴𝑝 𝑡 : 𝜎 ≥ 0, 𝜎 = 1

▪ ሶ𝑝 𝑡 − 𝛽 𝑝 𝑡 = 𝑐 − 𝜂 𝑡

▪ 𝑞∗ 𝑡 ⋅ 𝜂 𝑡 = 0, 𝑞∗ 𝑡 ≥ 0, 𝜂 𝑡 ≥ 0

▪ lim inf 𝑝 𝑡 ⋅ 𝑞∗ 𝑡 − 𝑞 𝑡 ≥ 0 for any fluid model 𝑞(𝑡)

𝜂 𝑡 : solution to the dual problem of associated LP

𝑝 𝑡 ≔ න
𝑡

𝑇

𝑒 𝑇−𝑡′ 𝑐 − 𝜂 𝑡′ 𝑑𝑡
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Computational Experiments

▪ Compare through simulations performance of our optimal control algorithm 

with that of 𝑐𝜇-rule and  max-weight scheduling algorithm in fluid model

▪ Fix number of input and output ports to be 𝑛 ∈ ℤ+ and fix throughput 𝜅 ∈ (0,1)

▪ For 1 ≤ 𝑖, 𝑗 ≤ 𝑛, randomly generate costs c𝑖𝑗 ∈ (0,1) and arrival rates 𝜆𝑖𝑗 ∈

0,1 such that
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Computational Experiments
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▪ Considered fluid model of general 𝑛 × 𝑛 input-queued switches where each fluid 

flow has associated cost

▪ Derived optimal scheduling control policy under general linear objective function 

based on minimizing discounted fluid cost over infinite horizon

▪ Optimal policy coincides with 𝑐𝜇-rule in certain parameter domains

▪ In general, optimal policy determined algorithmically by constrained flow 

maximization problem whose Lagrangian multipliers of some key network 

constraints were identified by set of carefully designed algorithms

▪ Computational experiments within fluid models of input-queued switches 

demonstrated significant benefits of our optimal scheduling policy over alternative 

policies such as the 𝑐𝜇 and max-weight scheduling policies

Conclusion
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