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What is this talk about?
• We analyze a data-processing system with n clients (job producer)

and m parallel servers serving jobs in batches.

• Seek to maximize system throughput Θ which critically depends
on batch size k.

• Numerical search for optimal batch size k∗ (corresponding to opti-
mal throughput Θ∗) prohibitively expensive and standard/naive
CTMC analysis takes ω

(
n4)

time.

• We provide a mean-field model for calculating k∗ in O(1) time.
– Findings validated in a prototype of large commercial database.
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1 Background



System Description

• Closed system: Client becomes active only after receiving re-
sponse to previously submitted query, i.e., total no. of jobs = n.

• Service speedup: Average batch service time g(k) is a sub-
additive function of batch size k.

• Utilization: Beyond a batch size, servers start idling yielding
a non-trivial optimization problem
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Flow Diagram
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2 Optimal Batch Size Maximizing Throughput:
Approaches



Exhaustive search

• Probe throughput for all possible batch size k ∈ {1, 2, . . . , n} to
find k∗.

– Infeasible for real systems with large number of clients.
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Model Assumptions
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• Number of jobs: x, y and zk are number of jobs at client,
batching and service station, respectively. Thus, x + y + zk = n.

• Exponential sleeping time: Clients produce jobs at rate λx

when x of them are active.
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• Exponential batching time: The batcher produces batches of
size k at rate M⌊y/k⌋ when there are y available jobs.

• Exponential batch service time: The service station consists
of a single queue and m parallel servers, each having a service
rate µ(k) = 1

g(k) . Usually, M >> µ.

– Overall batch service rate is µ min(m, z) when z batches are available.

• Speedup forms: Speedup has either of the following sub-additive
forms: linear, logarithmic, power.

10



Speedup Assumptions: Explanations

• Speedup influences throughput Θ but estimating average service
time g(k), ∀k is expensive.

• Assuming convenient forms lets us estimate parameters of g(k)
efficiently.

– Choose batch sizes to probe given a fixed budget (e.g., 5%).

– Derive OLS estimates for parameters of speedup form.

– Speedup form with least error picked as estimate.
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Approaches under Model Assumptions

Standard CTMC Analysis:

• Derive steady-state distribution of the CTMC.

• Calculate corresponding throughput ∀k.

• Find optimal batch size k∗.

Mean-field Analysis:

• Take no. of jobs n → ∞ and no. of servers m → ∞ s.t. m/n → α.

• Calculate steady state throughput as function of k.

• Find optimal batch size k∗.
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3 Standard CTMC Analysis: Details



Steps

• Estimate model parameters to populate intensity matrix Q(k) of
the CTMC.

• Obtain steady state distribution πππ by solving πππ · Q = 0.

• Expected steady state throughput obtained as

E[Θ(k)] =
∑

(x,y,zk)
πππ(x, y, zk) k µ(k) min(m, z).

• state prob. batch size state throughput dummy

• Find optimal batch size k∗ = argmaxk E[Θ(k)].
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Issues

• Intensity matrix Q has non-linear rates implying πππ ·Q = 0 cannot
be solved analytically.

• Numerical solution takes ω
(
n4)

time, n being number of clients.

• Estimate of k∗ matches closely with the findings in the com-
mercial database system, as we will see later.
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4 Mean-field Analysis



Additional Assumption

• Batching step is instantaneous.

– Batching station has (k − 1) jobs =⇒ Upon arrival of a new job, a
batch is forwarded to the service station immediately.

– Realistic as the batching step is ∼ 50 times faster than the service step
in the considered system.
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Implication
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• z = ⌊n−x
k ⌋ and y = n − x − z.

• x ↔ (x, y, zk), i.e., the state is adequately represented by number
of active clients x.
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Steady State Dynamics: Client Station
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• Expected job input rate = kµ(k)E
[

min
(

m, ⌊n−X
k ⌋

)]
.

• Expected job output rate = λE[X].
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Steady State Dynamics: Client Station

Under stationarity,

λE[X] = kµ(k)E
[

min
(

m, ⌊n − X

k
⌋
)]

, (= E[Θ])

=⇒ λE[X] ≤ kµ(k) min
(

m, ⌊n − E[X]
k

⌋
)

, (Jensen′s inequality)

=⇒ λE[X]
n

≤ min
(

m

n
kµ(k), λµ(k)

λ + µ(k)

)
.

Now, LHS = Expected relative steady state throughput E[Θ(n)/n] and
the bound is asymptotically tight when m/n → α ∈ R+ as n → ∞.
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Back to Optimal Throughput (or Batch Size)

Optimal relative throughput

E
[Θ∗

n

]
→ max

k
min

(
αkµ(k), λµ(k)

λ + µ(k)

)
.

i.e., optimal batch size

k∗ = argmax
k

min
(

αkµ(k), λµ(k)
λ + µ(k)

)
.
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Main Result: Asymptotic Tightness of the Bound
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The fraction of active clients w(n)(t) = X(n)(t)/n, t ≥ 0 has jump rates

q(n)(w → w − 1/n) = nwλ,

q(n)(w → w + k/n) = nµ(k) min
(

α,
1
n

⌊n − nw

k
⌋
)

, w = x

n
. (4.1)
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Theorem 1. (i) If w(n)(0) → w0 ∈ [0, 1] as n → ∞ in probability,
then we have

sup
0≤t≤T

∥∥∥w(n)(t) − w(t)
∥∥∥ → 0

in probability as n → ∞, where w(t) is the unique solution of the
following ODE:

ẇ(t) = f(w(t)), w(0) = w0, with

f(w) = kµ(k) min
(

α,
1 − w

k

)
− λw. (total drift from 4.1)
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(ii) For any w0 ∈ [0, 1], we have w(t) → w∗ as t → ∞, where

w∗ = min
(

µ(k)
λ + µ(k) ,

αkµ(k)
λ

)
. (unique solution of f(w) = 0)

(iii) The sequence of stationary measures π
(n)
w of the process

(w(n)(t), t ≥ 0) converges weakly to δw∗ (Dirac delta) as n → ∞.

24



Proof Idea

• (i) The limiting drift of w is given by f which is Lipschitz contin-
uous implying convergence in probability by Kurtz’s theorem [1].

• (ii) One can bound (w(t)−w∗) and show that it is non-increasing
in t. Thus w∗ is globally attractive.

• (iii) Observe that π
(n)
w is tight as it is defined on the compact

interval [0, 1].
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5 Experiments



Validation through a Prototype in a Commercial Database*

• Query rate estimated from observations.

• For a fixed probing budget, batch sizes are chosen s.t. variance
of the estimate is minimized. (D-optimal design)

– E.g., when n = 100 and one can probe 10 batch sizes,
{1, 2, . . . , 5, 96, 97, . . . , 100} should be chosen.

– The speedup form yielding minimum error is chosen.

*SAP HANA
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Results
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(b) n = 300

system ≡ prototype, exact ≡ naive CTMC approach, n = number of clients
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6 Multiple Job Types: Preemptive Priority



Further Results

• We prove similar results for two job types (e.g., read and write
in databases).

– One type is assumed to have preemptive priority over the
other.

– Batch size for different types can possibly be different.

• For equal batch sizes, the result was proved for any number
of types.
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Experiments

A similar experiment was done in a large commercial database where
write jobs had non-preemptive* priority over read jobs. (4 servers.)
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*due to system constraints, we have seen equivalence of both priorities in simulation
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Summary
• We analyze a closed batch-processing system with the objective

of maximizing throughput.

• Despite convenient assumptions, naive CTMC approach deter-
mines optimal batch size k∗ with considerable precision. (takes
ω

(
n4)

time)

• Mean-field approach provides a close match for k∗ in O(1) time.

• We also establish similar results for multiple job types under
certain constraints.
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