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Introduction
Modern data centers serve workloads which can exploit par-
allelism. When a job parallelizes across multiple servers
it completes more quickly. However, it is unclear how to
share a limited number of servers between many paralleliz-
able jobs.

In this paper we consider a typical scenario where a data
center composed of N servers will be tasked with completing
a set of M parallelizable jobs. Typically, M is much smaller
than N . In our scenario, each job consists of some amount
of inherent work which we refer to as a job’s size. We as-
sume that job sizes are known up front to the system, and
each job can utilize any number of servers at any moment
in time. These assumptions are reasonable for many paral-
lelizable workloads such as training neural networks using
TensorFlow [2]. Our goal in this paper is to allocate servers
to jobs so as to minimize the mean slowdown across all jobs,
where the slowdown of a job is the job’s completion time
divided by its running time if given exclusive access to all N
servers. Slowdown measures how a job was interfered with
by other jobs in the system, and is often the metric of inter-
est in the theoretical parallel scheduling literature (where it
is also called stretch), as well as the HPC community (where
it is called expansion factor).

What makes this problem difficult is that jobs receive a
concave, sublinear speedup from parallelization – jobs have a
decreasing marginal benefit from being allocated additional
servers (see Figure 1). Hence, in choosing a job to receive
each additional server, one must keep the overall efficiency of
the system in mind. This paper aims to determine the opti-
mal allocation of servers to jobs where jobs follow a realistic
sublinear speedup function.

It is clear that the optimal allocation policy will depend
heavily on the jobs’ speedup – how parallelizable the jobs
being run are. To see this, first consider the case where
each job is embarrassingly parallel (see Figure 1), and can be
parallelized perfectly across an arbitrary number of servers.
In this case, we observe that the entire data center can be
viewed as a single server that can be perfectly utilized by or
shared between jobs. Hence, from the single server schedul-
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Figure 1: A variety of speedup functions of the form
s(k) = kp, shown with varying values of p. When
p = 1 we say that jobs are embarrassingly parallel,
and hence we consider cases where 0 < p < 1. All
functions in this family are concave and lie below the
embarrassingly parallel speedup function (p = 1).

ing literature, it is known that the Shortest Remaining Pro-
cessing Time policy (SRPT) will minimize the mean slow-
down across jobs [3]. By contrast, if we consider the case
where jobs are hardly parallelizable, a single job receives
very little benefit from additional servers. In this case, the
optimal policy is to divide the system equally between jobs, a
policy called EQUI. In practice, a realistic speedup function
usually lies somewhere between these two extremes and thus
we must balance a trade-off between the SRPT and EQUI
policies in order to minimize mean slowdown. Specifically,
since jobs are partially parallelizable, it is still beneficial to
allocate more servers to smaller jobs than to large jobs. The
optimal policy with respect to mean slowdown must split the
difference between these policies, favoring short jobs while
still respecting the overall efficiency of the system.

Overview of Results
Our model assumes there are N identical servers which must
be allocated to M parallelizable jobs. All M jobs are present
at time t = 0. Job i is assumed to have some inherent size
xi where, without loss of generality,

x1 ≥ x2 ≥ . . . ≥ xM .

We assume that all jobs follow the same speedup function,
s : R+ → R+, which is of the form

s(k) = kp

for some 0 < p < 1. Specifically, if a job i of size xi is
allocated k servers, it will complete at time

xi
s(k)

.
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Figure 2: Mean slowdown of A-heSRPT and policies from the literature in the online setting. Simulations
assume N = 10, 000 servers and a Poisson arrival process. Job sizes are Pareto(α = 1.5) distributed. Each
graph shows mean slowdown for one value of the speedup parameter, p, where s(k) = kp. A-heSRPT often
dominates by an order of magnitude.

In general, the number of servers allocated to a job can
change over the course of the job’s lifetime. It therefore helps
to think of s(k) as a rate of service where the remaining size
of job i after running on k servers for a length of time t is

xi − t · s(k).

An allocation policy, P , must determine how many servers
are allocated to each job at every moment in time. We
denote the completion time of job i under policy P as TP

i .
Hence, the slowdown of job i under policy P , SP

i , can be
written as

SP
i =

TP
i

xi/s(N)
.

Our goal is to derive an allocation policy that minimizes
the mean slowdown across jobs. That is, we wish to find the
optimal function

θ∗(t) = (θ∗1(t), θ∗2(t), . . . , θ∗M ),

where θ∗i (t) denotes the fraction of the N servers allocated
to job i at any moment in time t.

To derive the optimal allocation policy, we develop a new
technique to reduce the dimensionality of the optimization
problem. This dimensionality reduction leverages two key
properties of the optimal policy. First, we show that the
optimal policy must complete jobs in shortest-job-first order.
This claim is stated in Theorem 1.

Theorem 1 (Optimal Completion Order). The op-
timal policy completes jobs in Shortest-Job-First order:

M,M − 1,M − 2, . . . , 1.

Next, we prove the scale-free property, which illustrates
the optimal substructure of the optimal policy. Our scale-
free property states that for any job, i, job i’s allocation
relative to jobs completed after job i (jobs larger than job
i) is constant throughout job i’s lifetime. This property is
stated formally in Theorem 2.

Theorem 2 (Scale-free Property). Under the op-
timal policy, for any job, i, which completes at time T ∗i ,
there exists a constant c∗i such that, for all t < T ∗i

θ∗i (t)∑i
j=1 θ

∗
j (t)

= c∗i .

Theorems 1 and 2 allow us to reduce our optimization
problem to a single, unconstrained optimization problem of
M variables. We solve this simplified optimization problem
to derive the first closed form expression for the optimal allo-
cation of servers to jobs which minimizes the mean slowdown
of a set of M jobs.

The optimal allocation function is given by Theorem 3.

Theorem 3 (Optimal Allocation Function). At
time t, when m(t) jobs remain in the system,

θ∗i (t) =


(

z(i)
z(m(t))

) 1
1−p −

(
z(i−1)
z(m(t))

) 1
1−p

1 ≤ i ≤ m(t)

0 i > m(t)

where

z(k) =

k∑
i=1

1

xi/s(N)
.

Our optimal allocation balances the benefits of SRPT and
the high efficiency of EQUI. We thus refer to our optimal
policy as high efficiency SRPT (heSRPT). We also provide
a closed form expression for the slowdown under heSRPT.
Additionally, we show that heSRPT can be generalized to
minimize a class of weighted flow time metrics that includes
both mean slowdown and mean flow time.

While most of this paper deals with the setting where all
jobs are present at time 0, the online setting where jobs ar-
rive over time is equally important. We propose an online
version of heSRPT called Adaptive-heSRPT which uses the
allocations from heSRPT to recalculate server allocations
on every arrival and departure. We compare A-heSRPT to
several policies from the literature — HELL[2], KNEE[2],
EQUI[1], and RS[4]. Adaptive-heSRPT outperforms these
competitor policies in simulation, often by an order of mag-
nitude. These simulation results are shown in Figure 2.
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