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ABSTRACT
Modern mobile systems are optimized for energy-efficient compu-
tation and communications, and these optimizations affect the way
they use the network, and thus the performance of the applications.
Therefore, understanding network and application performance
are essential for debugging, improving user experience, and perfor-
mance comparison. In recent years, several tools have emerged that
analyze network performance ofmobile applications in situ with the
help of the VPN service. However, there is a limited understanding
of how these measurement tools and system optimizations affect
the network and application performance. This paper first demon-
strates that mobile systems employ energy-aware system hardware
tuning, affecting network latency and throughput. We next show
that the VPN-based tools, such as Lumen, PrivacyGuard, and Video
Optimizer, aid in ambiguous network performance measurements
and degrade the application performance. Our findings suggest that
sound Internet traffic measurement on Android devices requires a
good understanding of the device, networks, measurement tools,
and applications.

CCS CONCEPTS
•Networks→Networkperformance evaluation; •Computer
systems organization→ Embedded systems.
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1 INTRODUCTION
In situ measurement tools shed light on the network and applica-
tion performance on mobile devices, however, they may provide
imperfect results. The sources for these imperfections can be the
implementation of the tools and hardware optimization, such as
mobile power management. The former can affect application per-
formance by changing the network flow characteristics, such as
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introducing delay and changing the protocol headers. The latter is
independent of any measurement tool, but it can also affect appli-
cation performance. Nevertheless, these imperfections can lead to
ambiguous results because we may measure something we have
not intended to measure [22]. Therefore, it is crucial to associate
power management with traffic measurements and set up the mea-
surement procedures accordingly.

In situ Internet traffic measurement tools, such as Video Opti-
mizer (VoP) [23], Lumen [25], PrivacyGuard (PvG) [27], and Mop-
Eye [30], have proven to be useful in debugging, improving user
experience, and performance comparison of mobile applications.
VoP [6], formerly known as ARO [23], is a popular open-source
tool for collecting traffic from mobile devices without rooting the
device, and it also enables various diagnosis and optimization of
applications, network, CPU and GPU through offline analysis [6].
MopEye monitors the networking performance of mobile applica-
tions. In contrast, Lumen and PvG are two online traffic analysis
tools that help users find privacy leaking incidents. Lumen also
provides insights on the TLS usage [25], the CDN usage [20], and
the DNS usage of mobile applications [8]. The alternative to these
tools is rooting the device and using tcpdump for offline analysis.

Our goal for this work is to demonstrate that sound and re-
producible measurement on mobile devices requires a thorough
understanding of the device. We, therefore, investigate the perfor-
mance of VoP, Lumen, and PvG. We were unable to study MopEye
because we were unable to find it in the Google Play Store and
public source code hosting websites, such as GitHub. We focus
our attention on these three tools because they exemplify state-of-
the-art in situ traffic measurement and analysis tools for Android
devices. Note that we do not aim to establish which tool is the best
or the worst for a given task. Although each of these tools has
different high-level goals, we show that they are good candidates
for traffic capturing and can be extended for traffic analysis. Our
key observations are as follows.

(1) We show that Android imposes different optimization tech-
niques, such as CPU hot-plugging and dynamic frequency scal-
ing. These two mostly affect network I/O, and thus the network
throughput. Similarly, the WiFi optimization, i.e., dynamic modula-
tion scheme, affects the uplink throughput. Therefore, one must be
aware of the adaptive performance characteristics of mobile devices
when conducting experiments (§2).

(2) VoP delays the outgoing traffic, and PvG delays the incoming
traffic in the range of 40-100 ms. Therefore, the corresponding pcap
traces from VoP have anomalies in the measurements. To avoid such
pitfalls in network and application performance measurements, one
must have a good understanding of these applications and tools. In
contrast, Lumen is free from such abnormal behavior.
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Figure 1: Impact of system optimization on CPU usage, WiFi (W) and LTE (4G) network performance on Nexus 6. Round#1,2
were taken one year earlier than Round#3,&4. The network performance measurements in (b), (c), (d) were conducted for Round#1&2.

(3) The VPN-based applications behave like an in-situ middle
box. Like most middle-boxes, they fail to recognize the application’s
intended optimizations expressed via socket options. As a conse-
quence, these tools are unable to capture the intended behavior of
applications in their traffic traces (§3).

(4) Various applications, such as multimedia streaming, rely on
on-device latency and throughput measurements to optimize the
streaming or live broadcasting [13]. These applications may esti-
mate ambiguous latency and throughput in the presence of the
VPN-based tools, as we demonstrate with the latency and through-
put measurement tools. In the presence of PvG, SpeedCheck [1]
estimates on-device latency instead of the network latency. Simi-
larly, VoP doubles the uplink throughput estimates (§4).

We are the first to highlight the presence and effect of battery
performance aware system optimization and the impact of mea-
surement tools on mobile network and application performance.
We summarize the sources of the above ambiguous or imperfect
measurement results and discuss how these tools can be extended
for more accurate measurements (§5).

2 IMPACT OF SYSTEM OPTIMIZATION
The power management of modern mobile systems relies heavily
on OS modules, i.e., governors. These modules optimize the energy
consumption of a device by throttling CPU usage or trading the
performance for longer battery life [21, 24]. An individual hardware
component also may sleep and use some inactivity timers to avoid
unnecessary energy consumption [18].

During the network throughput measurements on Nexus 6, we
observed throughput values with a large spread. Our further inves-
tigation revealed that the sources of such inconsistency had been
the Android system’s following optimizations.

Figure 1 (a) shows 4 discharge rounds of Nexus 6 running An-
droid 7.0. The top two rounds were conducted in early 2019, and
we notice that Nexus 6 uses only two cores when the battery level
is below 20%. Such observations were previously reported for other
Nexus devices [4, 5]. Further investigation revealed that the active
cores operate at the maximum frequency of 1.73 GHz when the
battery level is below 20%. When the battery level is above 20%,
all the four cores become active and operate at their maximum
frequency of 2.65 GHz. We also observed that the utilization of core
differs as the battery ages. Specifically, we observe a lower number
of available CPU cores, even with a higher battery level in Round#3

and Round#4. These rounds were conducted one year later than
the other rounds. During these rounds, we randomly used Nexus 6
for browsing with Chrome, which caused the transitions to lower
CPU cores when the battery levels were below 50%, as shown in
the figure.
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Figure 2: Impact of battery level on LTE modulation
scheme. Four samples from Network Signal Guru during the through-
put measurements.

During the first two rounds, we quantified the impact of these
optimizations on network performance. Specifically, we used Speed-
Check [1] (paid) and measured the latency and throughput on
Nexus 6 (Android 7.0) with both WiFi and LTE. Each of the above
four scenarios was repeated ten times, and the results are presented
in Figure 1. Figure 1 (b) shows that while hot unplugging of CPU
cores on Android has a negligible impact on the latency, its im-
pacts on throughput is significant. The availability of additional
CPU cores, when the battery level is above 20%, improves the I/O
performance across both WiFi and LTE.

Furthermore, WiFi uplink throughput improves almost four
times when the battery level is above 20% compared to when it is
below 20% (Figure 1 (c)). In contrast, the downlink throughput does
not degrade significantly with the lower battery level (Figure 1 (d)).
The closer inspections of the MAC layer frames revealed that the
WiFi radio of the Nexus 6 switches from 802.11ac to 802.11g mode
when the battery level drops below 20%. This implies that modern
Android devices adapt dynamic modulation schemes limiting the
WiFi uplink throughput.

Similar to WiFi, we further looked into the physical layer modu-
lation scheme used by the mobile device in the LTE network. We
rooted the Nexus 6 and installed Network Signal Guru [7] that sam-
ples LTE physical layer parameters every 500 ms. Figure 2 shows
that the modulation schemes are 16QAM (Quadrature Amplitude
Modulation) and 64QAM for uplink and downlink, respectively.
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We observed the usage of the same modulation schemes, and the
allocation of Physical Resource Blocks depends on the bitrates for
both uplink and downlink in Figure 1. Note that the selection of
16QAM for uplink is since Nexus 6 uses an earlier 3GPP release, as
uplink 64QAM was introduced in release 13.

We also observe that connecting the device to a charger after the
cores have become inactive does not improve the throughput either
on WiFi or LTE. Apart from workload characteristics, the devices
may also consider the battery health to employ the CPU cores. This
is because the performance of the battery in delivering the current
and power demands decreases as the battery ages. When the battery
voltage reduces to the cut off voltage due to the discharge load, the
device shuts down as the battery cannot meet the demand [28].

Nexus 6 enforces the device’s reliability by reducing the load on
the battery when a small amount of charge is left. The discovered
optimizations reduce the discharge load and avoid such sudden shut-
down as the battery ages [28]. Apple recently announced such op-
timizations for the latest iPhones to prevent unexpected shutdown
[9]. In order to have reproducible measurements of applications
or system performance, one must be aware of such optimization.
It is also essential to report the presence or absence of such op-
timizations as they, directly and indirectly, impact the network
performance.

3 IMPACT OF TOOLS ON TRAFFIC
Our above analysis and findings suggest that analyzing the traffic
traces that were collected when system optimization is being used
will provide incorrect results. Collecting and analyzing the traffic
traces is essential for various activities, including investigating
traffic patterns [16, 26], studying the flow properties of different
mobile applications and their implications for energy consumption
[13], analyzing the privacy of individuals [29], and quantifying
data waste [19]. On iOS devices, it is possible to collect traffic via
a remote virtual interface [10]. Such an interface currently does
not exist on Android, and several studies used tcpdump on rooted
Android phones [11, 14]. Rooting voids the device warranty, and
this can be avoided by using VPN-based tools such as VoP, Lumen,
PvG, or MopEye. This section investigates how these applications
impact the application’s intended flow properties, i.e., packet-gap,
packet size, while doing their operations.

3.1 In-situ Traffic Measurement Tools
The forwarder and the packet inspector are two components of the
VPN-based in situ traffic measurement tools exemplified by VoP,
Lumen, and PvG, as shown in Figure 3.

The forwarder’s primary role is to forward (i) the packets re-
ceived from Android applications to the Internet and (ii) the packets
received from the Internet to the Android apps. The forwarder also
copies those packets to the inspection queue to decouple the traffic
analysis from the packets’ path. For TCP flows, the forwarder in
Lumen and VoP establishes a socket connection with the remote
server using connect() API before sending SYN-ACK to the appli-
cation. In contrast, PvG establishes socket connection after replying
with SYN-ACK. Later, we demonstrate how these implementations
affect network performance measurements. For UDP flows, the
forwarder creates a new UDP socket when it detects a new flow.
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Figure 3: The system components of VoP, Lumen, and
PvG.The newly created sockets are protected so that the packets gen-
erated by the Forwarder do not come back to the Forwarder.

These newly created TCP and UDP sockets are protected so that
packets from those do not loop the tun interface [3].

A packet inspector is responsible for inspecting the packets in
its queue. In Lumen and PvG, the packet inspector performs the
privacy analysis on the packets, whereas the VoP’s inspector sends
packets to the desktop application.

3.2 Addressing Biases
We took the following steps to ensure that the measurement results
presented in the upcoming sections are not the artifacts of miscon-
figured tools and the measurement setup. (i) Battery level: based
on our observations in 2, we ensured that the devices had more
than 80% charge during the experiments. (ii) Throughput throttling:
because VoP also offers to throttle downlink and uplink traffic, all
the measurements in this section were conducted with throttling
disabled. (iii) Software Auto Update. During the experiments, appli-
cation and the auto system updates were disabled on mobile devices.
(iv) Advertisements.We have purchased without ad subscriptions
of SpeedCheck and SpeedTest to avoid advertisements.

3.3 Impact on TCP Traffic
We used Periscope to study the impact of VoP and Lumen on real-
time TCP flows. Periscope broadcasts over LTE across three differ-
ent scenarios; (i) baseline, with Lumen, and with VoP. Periscope’s
live broadcast did not work in the presence of PvG. We capture
traffic on Nexus 6 using tcpdump. In the case of VoP, we use both
VoP and tcpdump to capture traffic.

Figure 4 (left) shows the distributions of inter-packet gaps. The
distribution for VoP is generated from the pcap traces collected by
VoP, and we notice a fixed 100ms delay, whereas such a pattern is
absent with Lumen and Baseline distributions. From the distribution
of packet size in Figure 4 (right), we notice that more than 70%
packets captured by VoP are larger than 1500 bytes. From Traffic
traces, we have identified that VoP creates packets of a maximum of
65549 bytes for Periscope. However, the tcpdump captures showed
that such large packets were fragmented.
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Figure 4: Properties of uplink Periscope TCP flows.
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Baseline VoP Lumen
Application (in/out) (in/out) (in/out)

WhatsApp (v2.18) 21/24 kbps 23/16 kbps 20/22 kbps
IMO (v9.8) 14/15 kbps 14/13 kbps 13/14 kbps

Skype (v8.41) 60/50 kbps 55/44 kbps 48/44 kbps
Table 1: Average bitrates of VoIP applications.

From its source code in Github, we have identified that VoP
forwarder implements the maximum segment of 65535 bytes for
the TCP flows. With very high bitrate traffic, the buffer gets filled
very quickly, contributing to large TCP segments. VoP exports these
large segments to the pacp file. The forwarder also writes the same
data to the socket. Later in section 4, we show that this aids in
higher uplink throughput measurements presented. However, the
distributions of the inter-packet gap and packet size from Lumen
follow the Baseline measurements.

3.4 Impact on UDP Traffic
In this section, we investigate traffic from three VoIP applications—
IMO,WhatsApp, and Skype—that exchange bi-directional encrypted
UDP traffic. While these applications fall into the category of VoIP
applications, their varying traffic characteristics help us to study
the impact of the design of VoP and Lumen. We could not use these
applications in the presence of PvG in several trials. We used a
rooted Nexus 6 (Android 7.0) and a non-rooted LG G5 (Android 8.0)
for these measurements.

For our analysis, we consider three iterations of two-minute
conversations over LTE in the following scenarios. As the baseline,
we initiated conversations between Nexus 6 and LG G5 using these
apps without VoP or Lumen and captured traffic using tcpdump
on Nexus 6. We then repeated the experiments with VoP running
on Nexus 6 and collected traffic from VoP. Finally, we used Lumen.
Since Lumen does not store traffic, we captured traffic with tcpdump
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Figure 6: Distributions of the outgoing packet gaps observed
at the network interface.

on Nexus 6. For each scenario, we investigate the inter-packet gaps
and bitrates.

Baseline Results. The baseline plots in Figure 5 shows that IMO
has the highest inter-packet gaps, and Skype packets have the
smallest gaps. These apps also have distinct data rates due to the
underlying codec [12], with Skype having the highest data rate, as
shown in Table 1.

Impact of VoP. Compared to the baseline packet-gaps in Figure
Figure 5, VoP significantly alters the inter-packet gaps of outgoing
UDP packets. Most of the outgoing packets across all applications
have an inter-packet gap of about 100 ms. In contrast, the incoming
packets have had similar distributions to the baseline. We have
also experienced distorted voice using these applications in the
presence of VoP. Table 1 shows that the outgoing data rates of
Skype and Whatsapp reduce significantly, which we speculate to
be a consequence of the delays introduced by VoP.

Impact of Lumen. Figure 5 shows that with Lumen, the outgoing
packets are similarly spaced to the baseline measurements. Besides,
the applications experience similar bitrates to the baseline and
when using Lumen as shown in Table 1.

3.5 Analysis with Socket Options
This section investigates the performance of the VPN-based tools
in processing the flows with TCP_NODELAY (Nagel’s algorithm)
socket option on Nexus 6. We specifically look into this option
because it directly impacts the delay and the performance of web
browsing and other real-time applications on mobile devices, such
as live broadcasting. We developed a separate traffic generating
application that creates two blocking TCP sockets, one where Na-
gle’s algorithm is enabled and the other where it is disabled. The
application periodically sends 1300 bytes of data over LTE every
20 ms to a remote server running in our university network. The
application also periodically receives data from this remote server
every 20 ms in separate TCP sessions. Since the applications expe-
rience an additional delay due to Dalvik VM [17], we use the native
sockets API.

Performance of VPN-based Tools. Figure 6(a) presents the outgoing
inter-packet gap of the application flows, having Nagel’s algorithm
enabled and disabled. We observe that when Nagel’s algorithm is
enabled, more than 70% of the packets sent from the application
have more than 20 ms inter-packet gaps at the network layer. In
the presence of VPN applications, disabling Nagel’s algorithm by
the application does not reduce the packet-gaps compared to the
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baseline (Figure 6(b)). Interestingly, VoP’s packet gaps reduce, as it
receives packets from the local TCP/IP stack without delay. From
traffic traces, we have identified that these VPN-based tools do not
disable Nagel’s algorithm, i.e., do not set the socket option while
establishing socket connections.

Figure 7 shows the performance of the VPN applications for
incoming traffic. The application receives data at almost similar
gaps observed at the network interface. However, in the presence
of PvG, approximately 40% packets of the packets received by our
application are delayed. The packet-gaps patterns suggest that it
uses a fixed interval to read the VPN interface similar to VoP.

3.6 Summary
The results presented in this section reveal the following. (1) VoP
introduces a fixed delay on 100 ms in the uplink direction and gen-
erates huge packets, whereas PvG introduces delay for the applica-
tions in the downlink direction. Such delays degrade application
performance and can misguide the researchers and developers us-
ing these tools. In contrast, Lumen is free from such limitations in
both directions. (2) These VPN-based tools do not set the TCP/IP
socket options as intended by the user applications. Consequently,
they can degrade application performance and affect measurement
results. Findings in this section explain the high latency we observe
in the results presented in §4 when using SpeedTest.

4 IMPACTS ON APP PERFORMANCE
VoP captures traffic on mobile devices for offline analysis, whereas
Lumen and PvG track user application performance online. The ad-
ditional delay introduced by VoP causes poor quality of experience
for the voice of over IP applications. Some user applications may
rely on active network performance measurements, such as latency
and throughput. The prime examples are multimedia applications,
such as Netflix and YouTube, which actively measure these metrics
for applying various rate control algorithms [15]. To emulate ap-
plications that conduct these measurements, we use SpeedCheck
[1] and SpeedTest [2]. These two applications also apply different
methods to estimate latency and throughput. In this section, we
explore the network performance of these two applications in the
presence of VoP, Lumen, and PvG; the measurements were repeated
ten times.

(1) Latency. Figure 8 (a) compares the network latency reported
by the two applications in the presence of the VPN-based tools.
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Figure 8: Impact on LTE network latency and throughput.
We used SpeedCheck and SpeedTest on Nexus 6 in the presence of
Lumen (Lum.), VoP, PvG, and Baseline (Bas.).

In the baseline tcpdump traces, we observe that SpeedTest uses
10-12 requests/responses of few bytes (less than 100 Bytes) over
a TCP connection to estimate the latency. In our tests, SpeedTest
estimated the baseline latency of 16-18 ms. It experiences 3-5 ms
additional latency in the presence of Lumen and PvG, whereas VoP
increases the latency by three-fold. This is due to the optimization
strategy adopted by VoP, which we discussed earlier.

In contrast, SpeedCheck reports the median baseline network
latency of about 45 ms. In the corresponding tcpdump traces, we
observed ten consecutive TCP flows without any data exchange for
each latency measurements. These flows suggest that SpeedCheck
uses the TCP connect() API to measure the latency. Both VoP
and Lumen increase the median latency significantly. We speculate
that these two take more time to set up new TCP flows. However,
SpeedCheck underestimates the latency in the presence of PvG,
which is the consequence of the sending SYN-ACK by the PvG
forwarder before the connection is established with the remote
server, as discussed in §3.1.

(2) Uplink Throughput. In Figure 8 (b), we observe that SpeedTest
estimates higher uplink baseline throughput, as its server is in
our LTE operator’s network. It uses multiple parallel TCP connec-
tions to estimate the throughput. Both Lumen and PvG reduce the
throughput of SpeedTest and SpeedCheck by half compared to the
baselinemeasurements. However, Lumen severely affects the uplink
throughput measurements of the SpeedCheck. On closer inspec-
tion, we observed that SpeedCheck uses a single TCP connection
and sends a large amount of data. From an exception in Lumen’s
debug log, we characterized that Lumen’s forwarder cannot handle
such large volumes of traffic. Interestingly, VoP doubles the uplink
throughput of both applications.

(3) Downlink Throughput. In Figure 8 (c), we observe that SpeedTest
measures similar downlink throughput in the presence of the VPN
tools to the baseline. Lumen aids the highest throughput mea-
surements with SpeedCheck. However, VoP and PvG degrade the
throughput of SpeedCheck significantly.

5 SOURCES OF IMPERFECTION
Mobile system optimizations affect downlink and uplink through-
put, whereas the VPN-based tools we studied mostly affect the
uplink throughput and latency, i.e., the outgoing traffic.

Energy-Aware Optimization. Energy-aware system optimization
can affect the network performance by limiting the network I/O
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and applying adaptive modulation schemes. Therefore, it is wise
to perform such measurements when the battery is fully charged.
Such optimization comes as the combined effort of the system on
chip and the operating system. For example, Nexus 6 and Nexus
6P are powered by Snapdragon chips. Apple uses similar optimiza-
tion with iOS 12.1 and the latest iPhones of 8 and higher models
[9]. Regardless, VoP, Lumen, and PvG leverage different sleeping
techniques for optimizing their energy usage.

The additional latency introduced by VoP on outgoing packets is
the artifact of using a fixed sleep interval of 100 ms in its main VPN
thread. This delay further contributes to large outgoing packets for
higher bitrate uplink traffic and increased energy consumption for
fragmentation. PvG also introduces a fixed delay for the incoming
traffic. These delays affect the quality of the measurements and the
quality of experience when using other user applications.

Forwarder. In situ VPN-based measurement tools are in situ mid-
dleboxes that tap the packets using the VPN interface. Therefore,
these applications implement a forwarder which primarily con-
sists of three threads: the main VPN thread, and two socket read-
er/writer threads. The reader/writer threads continuously iterate
through a list of live sockets, which contributes to the delays. The
forwarder also implements a flow state machine for each flow and
constructs/de-constructs the packets. The implementation of the
forwarder thus affects the latency and throughput measurements.
We have also shown that the characteristics of the newly created
flows and their packet headers might not be the same as those
generated by the applications. The reason is that the corresponding
socket options must be set before the connection establishment,
and the forwarder currently has no way of detecting the socket
options used by the applications.

6 CONCLUSIONS
In this paper, we investigated the challenges in measuring network
and application performance in the presence of system optimiza-
tion and state-of-the-art measurement tools on Android devices.
There is still room for improvement in all the tools. For instance,
VoP and PvG can follow Lumen’s adaptive sleeping algorithm for
reducing the gaps in the outgoing and incoming packets, respec-
tively. All of them can adopt some default socket options to mitigate
the performance issues with the outgoing TCP traffic. It can be ar-
gued that VoP is mostly for the developers, and therefore, incurring
higher delays should not be a problem. Similarly, frequent massive
content uploading is rare, and 3-4 ms additional latency is accept-
able for many applications. Nevertheless, these imperfections can
significantly affect applications’ performance and the outcome of
traffic measurement studies that use these tools. Although Lumen
appears to be the best alternative candidate, it can be extended for
traffic capture and analysis. Along with the measurement tools,
it is necessary to understand the presence of various system opti-
mization techniques, which may affect network performance. Our
findings would assist the researchers and developers in performing
reproducible measurements on mobile devices.
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