
Scalable Load Balancing in the Presence of
Heterogeneous Servers

Kristen Gardner1, Jazeem Abdul Jaleel2, Alexander Wickeham2, Sherwin Doroudi2
1Department of Computer Science, Amherst College, Amherst, MA

2Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN

1. INTRODUCTION
In large-scale computer systems, deciding how to dispatch

arriving jobs to servers is a primary factor affecting system
performance. Consequently, there is a wealth of literature
on designing, analyzing, and evaluating the performance of
load balancing policies. For analytical tractability, most ex-
isting work on dispatching in large-scale systems makes a
key assumption: that the servers are homogeneous, mean-
ing that they all have the same speeds, capabilities, and
available resources. But this assumption is not accurate in
practice. Modern computer systems are instead heteroge-
neous: server farms may consist of multiple generations of
hardware, servers with varied resources, or even virtual ma-
chines running in a cloud environment. Given the ubiquity
of heterogeneity in today’s systems, it is critically impor-
tant to develop load balancing policies that perform well
in heterogeneous environments. In this paper, we focus on
systems in which server speeds are heterogeneous.

The dominant dispatching paradigm in the contempo-
rary literature on large scale systems is the “power of d
choices,” wherein a fixed number (d) of servers are queried
at random, and a dispatching decision is made among these
servers. Unfortunately, the “power of d” policies that have
been designed to perform well in homogeneous systems, such
as Join-the-Shortest-Queue-d (JSQ-d) [3, 4] and Shortest-
Expected-Delay-d (SED-d) can lead to unacceptably poor
performance in the presence of heterogeneity (see Figure 1).

Our key insight is that there are two decision points at
which “power of d” policies can use server speed informa-
tion: first, when choosing which d servers to query, and
second, when deciding where among the queried servers to
send an arriving job. Alone, neither decision point appears
to be enough to both ensure stability and achieve good per-
formance. In combination, they allow for the design of a new
class of powerful policies that benefit from server speed het-
erogeneity. We propose two new families of policies, called
JIQ-(dF ,dS) and JSQ-(dF ,dS), that are inspired by classi-
cal “power of d” policies but use server speed information at
both decision points. This enables them to outperform JSQ-
d, SED-d, and other heterogeneity-aware policies in certain
settings, as well as to maintain the full stability region.

2. MODEL
Our system consists of k heterogeneous servers. There are

two classes of servers: kF of the servers are “fast” servers

Copyright is held by author/owner(s).

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
JIQ-(2,2)

JSQ-(2,2)

JSQ-4

SED-4

WJSQ-4

Figure 1: Mean response time as a function of λ
under five policies, where µF

µS
= 10 and qF = 0.2.

and kS = k − kF of the servers are “slow” servers. We let
qF = kF

k
and qS = kS

k
= 1 − qF denote the fraction of

servers that are fast and slow respectively. Service times are
independent with rate µF on fast servers and rate µS on
slow servers, where the speed ratio µF /µS > 1. We assume
that µF qF + µSqS = 1, so the system has total capacity k.

Jobs arrive to the system as a Poisson process with rate
λk. Upon arrival to the system, a job is dispatched im-
mediately to a single server according to some policy. Each
server works on the jobs in its queue in first-come first-served
(FCFS) order.

We propose two families of dispatching policies: JIQ-
(dF , dS) and JSQ-(dF , dS). Both families favor idle fast
servers whenever possible, and both leverage the idea that
slow servers are occasionally worth utilizing, and it is bet-
ter to utilize them when idle rather than busy. Both policy
families are parameterized by dF and dS , as well as by prob-
abilities pF and pS ; each setting for these four parameters
defines a different specific policy within the family.

Definition 1. Under both JIQ-(dF , dS) and JSQ-(dF , dS),
when a job arrives the dispatcher queries dF fast servers and
dS slow servers, chosen uniformly at random without re-
placement. The job is then dispatched to one of the queried
servers as follows:

• If any of the dF fast servers are idle, the job begins service
on one of them.

• If all dF fast servers are busy and any of the dS slow
servers are idle:

– With probability pS the job begins service on an idle slow
server.



– With probability 1−pS the job is dispatched to a chosen
fast server among the dF queried.

• If all dF + dS queried servers are busy:

– With probability pF the job is dispatched to a chosen
fast server among the dF queried.

– With probability 1−pF the job is dispatched to a chosen
slow server among the dS queried.

The difference between the two policies lies in how a busy
server (among those under consideration) is chosen. Un-
der JIQ-(dF ,dS) the server is chosen uniformly at random.
Under JSQ-(dF ,dS) the server with the shortest queue is
chosen, with ties broken uniformly at random.

3. ANALYTICAL APPROACH
We first study stability, the property that each server ex-

periences an average arrival rate less than its service rate;
because all servers are work conserving in our model, this
notion of stability is equivalent to the property that each
server is idle a nonzero fraction of the time. This property
is a necessary condition for achieving finite mean response
time. We show that both policies achieve the maximum pos-
sible stability region, assuming that pF and pS are chosen
optimally, and then derive more specific necessary and spe-
cific conditions for stability as λ → 1. These results allow
for generally distributed service times.

Theorem 1. Under both JIQ-(dF ,dS) and JSQ-(dF ,dS),
for any values of dF , dS ≥ 1, there exist choices of pF and
pS such that the system is stable for λ < µF qF + µSqS = 1.

Theorem 2. As λ → 1, the system is unstable if pF 6=
µF qF , and the system is stable if pF = µF qF and pS ≥ µSqS.

We next analyze the queue length distribution and mean
response time under both JIQ-(dF , dS) and JSQ-(dF , dS).
We assume that k →∞ and that in this limiting regime all
servers’ queue lengths become independent. This is a com-
mon assumption in the analysis of large-scale systems that
has been proved for several related systems (see, e.g., [1]),
and it allows us to treat a single queue as its own isolated
system. We provide a brief sketch of our approaches to an-
alyzing both policies:

• For JIQ-(dF , dS), we use a mean field approach and con-
sider a tagged fast server and a tagged slow server in iso-
lation. We derive λIF , λIS , λBF , and λBS , respectively
the arrival rates to the tagged fast and slow servers when
idle and when busy. We observe that the dynamics of a
busy fast (respectively, slow) server are identical to those
of an M/G/1 system with arrival rate λBF and the same
service time distribution as in our system. This allows us
to apply the Pollaczek-Khinchine formula to obtain the
mean response times at the tagged fast and slow servers.

• For JSQ-(dF , dS), we assume exponentially distributed
service times. We consider a tagged arrival and condi-
tion on whether the tagged arrival ultimately runs on a
fast server or a slow server and on whether it has to wait
in the queue. We formulate a system of differential equa-
tions for fi(t) (respectively, si(t)), the fraction of fast (re-
spectively, slow) servers that have at least i jobs at time
t. Solving this system of equations allows us to find the

queue length distributions at fast and slow servers, and,
from this, the mean response time for the tagged arrival.

For both policy families, we minimize mean response time
by optimizing over pF and pS , assuming a fixed dF and dS .

4. RESULTS AND DISCUSSION
We compare mean response time under JIQ-(dF ,dS) and

JSQ-(dF ,dS) to that under three other policies (results for
our policies are analytical, while results for the following
policies are simulated):

• Under JSQ-d, the dispatcher queries d servers uniformly
at random and sends the job to the queried server with
the shortest queue.

• Under SED-d, the dispatcher queries d servers uniformly
at random and sends the job to the queried server at which
it has the shortest expected delay.

• Under WJSQ-d (Weighted JSQ-d), the dispatcher queries
d servers, where the probability that a server is queried is
proportional to that server’s speed, and sends the job to
the queried server with the shortest queue [2].

We note that JSQ-d is heterogeneity-unaware, SED-d only
uses heterogeneity information when dispatching, and WJSQ-
d only uses heterogeneity information when querying.

Figure 1 illustrates our results in one particular case, when
µF
µS

is high and qF is low. Here, both JSQ-d and SED-d can

lead to apparent instability. While WJSQ-d avoids instabil-
ity at high load, performance under WJSQ-d still suffers at
low load. In contrast, our policies always remain stable, and
in some cases achieve better performance, by differentiating
between fast and slow servers both when querying and when
choosing where to dispatch among the queried servers.

Our work establishes that, in order to achieve good perfor-
mance in heterogeneous systems, “power of d” dispatching
policies should use heterogeneity information at two deci-
sion points: (1) when choosing which servers to query, and
(2) when choosing where among the queried servers to dis-
patch a job. Ultimately, how best to distribute jobs among
fast and slow servers depends jointly on the system load, the
fraction of servers that are fast, and the relative speeds of
the servers. Because there is no single right answer, policies
designed for heterogeneous systems must be able to adapt
to the system parameters. JIQ-(dF ,dS) and JSQ-(dF ,dS)
do this by optimizing over the probabilistic parameters to
choose the best allocation of jobs to fast and slow servers.

5. REFERENCES
[1] M. Bramson, Y. Lu, and B. Prabhakar. Asymptotic

independence of queues under randomized load
balancing. Queueing Systems, 71(3):247–292, 2012.

[2] H. Chen and H.-Q. Ye. Asymptotic optimality of
balanced routing. Operations research, 60(1):163–179,
2012.

[3] M. Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on
Parallel and Distributed Systems, 12(10):1094–1104,
2001.

[4] N. Vvedenskaya, R. Dobrushin, and F. Karpelevich.
Queueing system with selection of the shortest of two
queues: An asymptotic approach. Problemy Peredachi
Informatsii, 32(1):20–34, 1996.


