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ABSTRACT
We study a quantum switch serving a set of users in a star
topology. The function of the switch is to create bipartite
or tripartite entangled state among users at the highest pos-
sible rates at a fixed ratio. We model a set of randomized
switching policies. Discovering that some are better than
others, we present analytical results for the case where the
switch stores one qubit per user, and find that the best poli-
cies outperform a time division multiplexing (TDM) policy
for sharing the switch between bipartite and tripartite state
generation. This performance improvement decreases as the
number of users grows. The model is easily augmented to
study the capacity region in the presence of qubit deco-
herence, obtaining similar results. Moreover, decoherence
appears to have little effect on capacity. We also study a
smaller class of policies when the switch stores two qubits
per user.

1. INTRODUCTION
Multi-qubit entangled states are fundamental ingredients

of several quantum computation, sensing, and security appli-
cations. Consequently there is a need for a quantum network
that can generate such entanglement on demand between
pairs and groups of users [12, 14, 15]. In this paper, we
study the performance of the simplest multi-user network,
a star-topology quantum switch connecting k users, where
each user is connected to the switch via a separate link.
Bipartite, two-qubit maximally-entangled states, i.e., Bell
pairs (or EPR states) are generated at a constant rate across
each link, with the qubits stored at local quantum memo-
ries at each end of the links. As these link entanglements
start appearing, the switch uses two-qubit Bell-state mea-
surement (BSM) between pairs of locally-held qubits and
three-qubit Greenberger-Horne-Zeilinger (GHZ) basis mea-
surements between triples of locally-held qubits to provide
two-qubit and three-qubit entanglements to pairs and triples
of users, respectively [11]. The capacity of such a switch to
provide these two types of entanglements to the users de-
pends on the switching mechanism, the number of quantum
memories and their decoherence rates, and the number of
links.

In this paper, we study the capacity region when the
switch can store either B = 1 or B = 2 qubits for each link
at any given time. The number of quantum memories avail-
able to a link is referred to as its buffer size. We consider a

Copyright is held by author/owner(s).

simple time division multiplexing (TDM) policy between the
two types of entanglements, along with a class of random-
ized policies. When properly configured, the latter provide
higher capacities than TDM. However the relative difference
between the two policies goes to zero as k → ∞. We also
observe that increasing the number of memories from one to
two increases capacity but that the increase diminishes as k
increases. We also explore the effect that decoherence—the
locally stored qubits at each end of the link being subject
to a noise process that reduces the entanglement between
the two qubits—has on capacity. In the cases of B = 1
with and without decoherence, we have simple closed form
expressions for capacity whereas for the case of B = 2, our
results are numerical.

The remainder of this paper is organized as follows: in
Section 2, we provide relevant background and related work.
In Section 3, we formulate the problem and propose a method
for solving it. In Section 4, we present the case where the
system has a per-link buffer of size one, and provide analyti-
cal and numerical results. In Section 5, we present numerical
results for the case where the system has a per-link buffer
of size two and observe similar behavior to the buffer size
one case. In Section 6, we introduce a simple technique for
modeling quantum state decoherence and use it to examine
the effect of decoherence on the bipartite-tripartite capacity
region for systems with per-link buffer sizes one and two.
For the former, we also have analytical results. We make
concluding remarks in Section 7.

2. BACKGROUND AND RELATED WORK
Bell states are an integral part of a diverse set of dis-

tributed quantum applications, including Quantum Key Dis-
tribution (QKD) [2, 4], superdense coding [3], teleporta-
tion [1], and distributed quantum computation [9]. Sim-
ilarly, GHZ states can be used to implement a variety of
quantum protocols, such as cryptographic conferencing [6],
quantum sensing [5], and multipartite generalization of su-
perdense coding [8]. The advantage of these applications is
that they offer functionality that cannot be achieved clas-
sically, e.g., information-theoretic security. However, quan-
tum distributed tasks typically require reliable transport of
quantum states; this can be a significant challenge due to
the exponential rate-versus-distance decay [13]. Quantum
repeaters positioned between communicating parties allevi-
ate this issue [7]. In this work, we use the term “quantum
switch” instead of “repeater” to indicate that the former is
equipped with entanglement switching logic.

A mathematical model for a quantum switch was origi-



nally introduced in [16]. There, the authors study a switch
that serves only BSMs, but state decoherence, link hetero-
geneity, and arbitrary buffer sizes (including infinite) are
considered. In [10], the authors study a multipartite entan-
glement distribution switch that serves n-partite GHZ states
to users, for n ≥ 3. In this work, links are assumed to be
identical and the effects of state decoherence negligible. In
contrast to this prior work, we no longer assume that the
switch serves only one type of entangled state, i.e., we al-
low n to be either two or three, and our goal is to design
and evaluate a suitable switching policy. Another contrast
to [10] is that there, the quantum switch is modeled to have
an infinite number of quantum memories, while in this work
we consider finite buffer sizes that scale with the number of
links.

3. SYSTEM DESCRIPTION
We consider a switch that connects k users over k separate

links. The creation of an end-to-end entanglement requires
two steps. First two-qubit Bell states are generated pairwise
between a qubit stored locally at the switch and a qubit
owned by a user. Once such link-level two-qubit entangled
states have been created, the switch performs joint (entan-
gling) measurements (over j ≥ 2 locally-held qubits that
are entangled with qubits held by j distinct users), which,
if successful, produces a j-qubit maximally-entangled state
between the corresponding j users. Link-level entanglement
generation, as well as entangling measurements, when real-
ized with practical systems, are inherently probabilistic [7].
We assume that only two-user (two-qubit) and three-user
(three-qubit) entanglements are created, i.e., BSMs and 3-
qubit GHZ basis measurements are done at the switch. For
simplicity, we will assume that these j = 2 or 3 qubit mea-
surements at the switch take negligible time and always suc-
ceed.

Each link attempts two-qubit entanglements in each time
slot of length τ seconds, and with probability p, establishes
one entangled pair successfully. For simplicity, we model
the time to successfully create a link entanglement as an
exponential random variable with mean 1/µ = τ/p. We
assume that each link can store B = 1, 2, . . . qubits. We also
assume that qubits at the switch can decohere and model
decoherence time as an exponential r.v. with mean 1/α. We
assume a step-function decoherence model where the two-
qubit entanglement goes from a maximally-entangled qubit
pair (one ebit) to zero entanglement. In this paper, we only
consider B = 1, 2. Last, when a qubit is stored at the switch,
with its entangled pair stored at a user, we refer to this as
a stored link entanglement.

We assume that all possible bipartite and tripartite user
entanglements are of interest and consider two classes of
probabilistic policies, one for B = 1 and the second for
B = 2, that provide the flexibility to generate both types of
entanglements with arbitrary rates. Policies in both classes
incorporate the oldest link entanglement first (OLEF) rule
whereby when a link entanglement is created it is always
matched up with stored link entanglements when possible
rather than be stored. This has the nice consequence, when
coupled with the assumption that links are homogeneous
but statistically independent, that the system can be mod-
eled by a continuous time Markov chain (CTMC) where the
state simply tracks the number of stored entanglements for
two users. The next section describes the class of policies

Figure 1: CTMC for a system with at least three links and
buffer size one for each link. k is the number of links, µ is
the rate of entanglement generation, and r1, r2, and r3 are
parameters that specify the scheduling policy.

for B = 1 and Section 5 for the class of B = 2 policies.

4. PER-LINK BUFFER SIZE ONE
In this section, we assume that each link can store one

qubit in the buffer, so that the per-link buffer size B = 1.
We model this system using a CTMC, and by obtaining its
stationary distribution, we are able to compute the capacity
region of the switch. We discover that it is always possible
to configure a randomized policy that outperforms TDM,
although as the number of links grows, the advantage of
using such a policy diminishes.

4.1 Description
In a system where the switch can make tripartite measure-

ments, we must keep track of two variables for each state of
the CTMC: each representing a link with a stored qubit.
Hence, (1, 1) represents the state where two of the k links
have a qubit stored, one each. Note that we do not need
to keep track of all links individually due to the OLEF rule
and link homogeneity assumption. States (1, 0) and (0, 0)
represent cases where only one link has a stored qubit or no
link has a qubit, respectively.

The system is fully described in Figure 1. For a vari-
able x ∈ [0, 1], we use the notation x̄ ≡ 1 − x. When the
system is in state (0, 0), new entanglements are generated
with rate kµ; this is the rate of transitioning from (0, 0) to
(1, 0). When the system is in state (1, 0), any new entan-
glements generated on the link that already has one stored
qubit causes the switch to drop one of the qubits. New en-
tanglements on other links are generated with rate (k−1)µ,
and the switch must decide whether to immediately use the
two qubits for a BSM or keep both and wait for a new link
entanglement. To generalize the policy as much as possi-
ble, we add a policy parameter, r1 ∈ [0, 1], that specifies
the fraction of time the switch performs a BSM. Note that
r1 = 1 corresponds to the policy of always using qubits for
BSMs. While this maximizes C2, it also means that C3 = 0.

Now, suppose that the system is in state (1, 1) and a third
link generates an entanglement. This event occurs with rate
(k − 2)µ. The switch has two choices: either use all three
qubits for a tripartite measurement, or choose two of them
for a BSM. We add another policy parameter, r2 ∈ [0, 1],
that specifies fractions of times the switch performs a BSM
and tripartite measurements in the event of three qubits on



Figure 2: Capacity region for a system of buffer size one and
three links. The red line represents the set of TDM policies.

three different links. Another event that can occur in the
(1, 1) state is the generation of an entanglement on either
of the two links that already have stored entanglements.
This event occurs with rate 2µ. Since B = 1, the switch
cannot store the new entanglement. A decision must be
made: to either discard one of the link entanglements (and
remain in state (1, 1)) or perform a BSM on two of them
and keep the third (and transition to state (1, 0)). Since
it is not clear which policy is most advantageous, we add
another parameter, r3 ∈ [0, 1], which specifies the fraction
of time that the switch performs a BSM when it resides in
this state.

4.2 Numerical Results
We plot the capacity region for the switch with B = 1 for

all values of r1, r2, r3 ∈ [0, 1] and compare it against TDM.
The entanglement generation rate µ simply scales the ca-
pacities, so we set it equal to one. In Figure 2, the number
of links is three, and the TDM line (comprised by the set of
TDM switching policies) is shown in red. Clearly, it is pos-
sible to design a policy that yields better performance than
TDM: the triangular blue region above TDM represents the
maximum capacities of the set of such policies.

Note that the TDM line connects the points (0, C∗2 ) and
(C∗3 , 0), where C∗2 and C∗3 are the maximum achievable ca-
pacities for bi- and tripartite measurements, respectively.
The point farthest from and above TDM (the vertex of the
triangular region above the line, shown in green in Figure
2) is achieved by setting r1 = 0 and r2 = r3 = 1. In other
words, the most “efficient” policy in terms of being the far-
thest from the TDM line is the following: (i) never perform
BSMs in state (1, 0); and (ii) when in state (1, 1) and a third
entanglement is generated on a different link, always use it
in a tripartite measurement, but when a third entanglement
is generated on one of the links that already has a stored
qubit, always perform a BSM. Note that the latter rule di-
rects the switch to not waste an entanglement whenever it
is possible to use it in a measurement.

The capacity regions for k = 10 and 50 are shown in Fig-
ure 3. Note that as the number of links increases, the differ-
ences between TDM and the more efficient random policies
diminish. In the next section, we provide an analytical proof
of this phenomenon.

4.3 Analysis
Let π(0, 0), π(1, 0), and π(1, 1) represent the stationary

distribution of the CTMC in Figure 1. The balance equa-
tions (excluding µ, as it cancels out due to every transition

(a) k = 10 (b) k = 50

Figure 3: Capacity region for a system of buffer size one and
varying number of links. The red line represents the set of
TDM policies.

rate being its multiple), are:

π(0, 0)k = π(1, 0)(k − 1)r1 + π(1, 1)(k − 2)r2,

π(1, 1)((k − 2)r2 + (k − 2)r̄2 + 2r3) = π(1, 0)(k − 1)r̄1,

π(0, 0) + π(1, 0) + π(1, 1) = 1.

Solving these equations yields

π(1, 1) =
k(k − 1)r̄1

D
,

π(1, 0) =
k(k − 2 + 2r3)

D
, where

D = (k − 2 + 2r3)((k − 1)r1 + k) + (k − 1)r̄1((k − 2)r2 + k).

Then the bipartite and tripartite capacities for this system,
C2 ≡ C2(r1, r2, r3) and C3 ≡ C3(r1, r2, r3), are

C2 = π(1, 0)(k − 1)µr1 + π(1, 1)((k − 2)µr̄2 + 2µr3)

=
k(k − 1)µ(k − 2 + 2r3 − (k − 2)r2r̄1)

(k − 2 + 2r3)((k − 1)r1 + k) + (k − 1)r̄1((k − 2)r2 + k)
,

C3 = π(1, 1)(k − 2)µr2

=
k(k − 1)(k − 2)µr2r̄1

(k − 2 + 2r3)((k − 1)r1 + k) + (k − 1)r̄1((k − 2)r2 + k)
.

Claim 1. The maximum value of C2 is given by C∗2 =
C2(r1, 0, 1) = C2(1, 0, r3), where r1 and r3 are arbitrary val-
ues in [0, 1]. The maximum value of C3 is given by C∗3 =
C3(0, 1, 0).

Proof. We start by proving this for C2. First, note that
to maximize C2’s numerator and minimize its denominator,
r2 must be set to 0. This yields

C2(r1, 0, r3) =
k(k − 1)µ(k − 2 + 2r3)

(k − 2 + 2r3)((k − 1)r1 + k) + k(k − 1)r̄1

=
k(k − 1)µ

(k − 1)r1 + k + k(k−1)r̄1
k−2+2r3

.

Now, r3 = 1 maximizes C2(r1, 0, r3), which yields

C2(r1, 0, 1) =
k(k − 1)µ

(k − 1)r1 + k + (k − 1)r̄1
=
k(k − 1)µ

2k − 1
.

Note that C2(1, 0, r3) yields the same expression as C2(r1, 0, 1).
Next, consider the expression for C3. To minimize the de-
nominator, we should set r3 = 0. This yields

C3(r1, r2, 0) =
k(k − 1)(k − 2)µr2r̄1

(k − 2)((k − 1)r1 + k) + (k − 1)r̄1((k − 2)r2 + k)

=
k(k − 1)(k − 2)µr2r̄1

(k − 1)r1((k − 2)r̄2 − k) + k(k − 2) + (k − 1)((k − 2)r2 + k)
.



It is clear that r1 must be 0, which yields

C3(0, r2, 0) =
k(k − 1)(k − 2)µr2

k(k − 2) + (k − 1)((k − 2)r2 + k)

=
k(k − 1)(k − 2)µr2

k(2k − 3) + (k − 1)(k − 2)r2

=
k(k − 1)(k − 2)µ

k(2k−3)
r2

+ (k − 1)(k − 2)
.

From above, we can see that r2 must be 1, so the maximum
is at C∗3 = C3(0, 1, 0).

For brevity, let (C3(0, 1, 1), C2(0, 1, 1)) ≡ (Ĉ3, Ĉ2); this is
the point farthest above the TDM line within the achievable
capacity region (e.g., the green point in Figure 2). We prove
this as part of the proof of the claim below.

Claim 2. Any point (C3, C2) in the achievable capacity
region satisfies the following constraints:

C2 ≤ −
3k − 2

2k − 1
C3 +

µk(k − 1)

2k − 1
and (1)

C2 ≤ −
k(k − 2) + 2(k − 1)2

k(k − 2)
C3 + µ(k − 1), (2)

C2, C3 ≥ 0. (3)

Moreover (1) and (2) define a tight upper bound on the
achievable capacity region.

Proof. First, we must show that the point (Ĉ3, Ĉ2) is in-
deed the farthest from the TDM line. We do this by first as-
suming that there exists an achievable capacity region above
the TDM line that is shaped like a triangle, as in Figures 2
and 3, and later prove this to be true. With this assumption,
the point farthest from the TDM line will be located at the
vertex of this triangle. Thus, let us find a point (C3, C2) on
the plane such that the (potentially negative) slope of the
line that passes through it and (0, C∗2 ) is maximized. This
is equivalent to minimizing the quantity

C∗2 − C2

C3
=

(3k − 2)(k − 2)r2 + 2(k − 1)(1− r3)

r2(2k − 1)(k − 2)
.

To do so, we must set r3 = 1. Next, note that the TDM
line is given by the equation f(x, y) = y − C∗2 (1 − x/C∗3 ),
and the distance between it and any point (C3, C2) is given

by |f(C3, C2)|/
√

1 + (C∗2/C
∗
3 )2. Hence, it is sufficient to

maximize |f(C3(r1, r2, 1), C2(r1, r2, 1))|, given by

2µk(k − 1)

(2k − 1)
(
k − 2 + 2k2−k

(k−1)r2(1−r1)

) .
It is clear that we must set r2 = 1 and r1 = 0, yielding
(Ĉ3, Ĉ2) as the point farthest from the TDM line, as ex-
pected.

Next, consider the line passing through (0, C∗2 ) and (Ĉ3, Ĉ2):

y1 = −3k − 2

2k − 1
x1 +

µk(k − 1)

2k − 1
, (4)

and the line passing through (Ĉ3, Ĉ2) and (C∗3 , 0):

y2 = −k(k − 2) + 2(k − 1)2

k(k − 2)
x2 + µ(k − 1). (5)

It is not hard to show that for any point (C3, C2), (1) and
(2) are satisfied. In other words, all points in the achievable
capacity region fall on or below these two lines. To prove
that this upper bound is tight, it remains to show that all
points on lines (4) and (5) are achievable. To see this, let
r1 = 0 and r3 = 1:

C2(0, r2, 1) =
(k − (k − 2)r2)k(k − 1)µ

k2 + (k − 1)(k + (k − 2)r2)
,

C3(0, r2, 1) =
(k − 2)r2k(k − 1)µ

k2 + (k − 1)(k + (k − 2)r2)
.

Note that any point (C3(0, r2, 1), C2(0, r2, 1)) is on line (4),
and these two functions are continuous in r2 ∈ [0, 1]. Simi-
larly, letting r1 = 0 and r2 = 1, we have

C2(0, 1, r3) =
2r3k(k − 1)µ

k(k − 2 + 2r3) + 2(k − 1)2
,

C3(0, 1, r3) =
k(k − 1)(k − 2)µ

k(k − 2 + 2r3) + 2(k − 1)2
.

Any point (C3(0, 1, r3), C2(0, 1, r3)) is on line (5), and these
two functions are continuous in r3 ∈ [0, 1]. Using these facts,
we conclude that all points on (4) and (5) are achievable.

Claim 3. As k → ∞, the benefit of using an alternate
policy (one that lies above TDM) diminishes.

Proof. We prove this by showing that as k → ∞, the
ratio of the achievable area above the TDM line, which
we call A4 (because this area has the shape of a triangle)
to the total area below the capacity region, which we call
AT , goes to zero. For A4, the length of the base of the
triangle is simply the distance between the points (0, C∗2 )

and (C∗3 , 0), or
√

(C∗2 )2 + (C∗3 )2. The height is given by

|f(Ĉ3, Ĉ2)|/
√

1 + (C∗2/C
∗
3 )2. Then

A4 =
|f(Ĉ3, Ĉ2)|C∗3

2
.

Then, the area below the TDM line is given by

ATDM =
(C∗2 )2 + (C∗3 )2

4
, so the total area is

AT = A4 +ATDM =
2|f(Ĉ3, Ĉ2)|C∗3 + (C∗2 )2 + (C∗3 )2

4
.

Then the ratio of the area above the TDM to the total area
is

A4

AT
=

2|f(Ĉ3, Ĉ2)|C∗3
2|f(Ĉ3, Ĉ2)|C∗3 + (C∗2 )2 + (C∗3 )2

=
1

1 +
(C∗

2 )2+(C∗
3 )2

2|f(Ĉ3,Ĉ2)|C∗
3

.

To prove that this ratio goes to zero with k, it suffices to
show that the second term in the denominator goes to∞. It

can be shown that ((C∗2 )2+(C∗3 )2)/2|f(Ĉ3, Ĉ2)|C∗3 simplifies
to

39k6 − 220k5 + 493k4 − 568k3 + 362k2 − 120k + 16

4(6k5 − 33k4 + 67k3 − 62k2 + 26k − 4)

k→∞−→ ∞.

5. PER-LINK BUFFER SIZE TWO
In a system with per-link buffer size two, there are three

additional states, as shown in Figure 4. The goal of this part
of the study is to show the existence of better policies than
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Figure 4: CTMC for a system with at least three links and
buffer size two for each link. k is the number of links, µ
is the rate of entanglement generation, and r2 and r3 are
parameters that specify the scheduling policy.

(a) k = 3 (b) k = 10

Figure 5: Capacity region for per-link buffer size B = 2, for
k = 3, 10 links. The red line represents the set of TDM
policies.

TDM, rather than to find the optimal policy. Hence, the
design in Figure 4 does not encapsulate all possible policies:
for instance, there is no r1 parameter here, since our exhaus-
tive search over the entire parameter space for the system
with B = 1 revealed that r1 is best set to zero. In addition,
note that if the system is in state (1, 1) and another entan-
glement is generated on one of the links that already has
a stored qubit, the system is not allowed to use two of the
qubits for a BSM. The reasoning is that since B = 2, there
is enough space to keep the new qubit. Similarly, when the
system is in state (2, 1) a BSM is only allowed if (i) another
entanglement is generated on one of the k − 2 links that
does not have a stored qubit, or (ii) another entanglement
is generated on the link that already has two qubits stored.
In the latter scenario, not performing a BSM would cause a
qubit to be discarded. While this design does not grant the
switch access to the full range of policies, it does enable us
to find a class of policies that are more efficient than TDM.

Figure 5 shows capacity regions for B = 2 with number of
links k = 3 and 10. We observe that policies more efficient
than TDM can be found, but as the number of links grows,
the advantage of such policies relative to TDM diminishes.
This phenomenon mimics that of the B = 1 switch. Figure
6 shows a comparison of B = 1 and B = 2 switches for
three and ten links. We observe that while there is a clear
benefit to extra buffer space for a small number of users,
the advantage becomes less apparent as the number of users
grows. In addition, it appears that C3 benefits more from
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Figure 6: Comparison of capacity regions for systems of
buffer sizes one and two with varying number of links k,
and entanglement generation rate µ = 1.
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kμ

(k − 1)μ + αr1

(k − 1)μr̄1

1,1
(k − 2)μr2

(k − 2)μ + 2μ + 2αr̄2 r3

Figure 7: CTMC for a system with at least three links and
buffer size one. k is the number of links, µ is the rate of
entanglement generation, α is the decoherence rate, and r1,
r2, r3 are parameters that specify the scheduling policy.

the extra buffer space than C2.

6. MODELING DECOHERENCE
In this section, we present a simple way to augment the

model from Section 4 to account for the decoherence of quan-
tum states. For switches with B = 1, we present both an-
alytic and numerical results. We also augment the model
from Section 5 to incorporate decoherence, but for switches
with B = 2, we present only numerical results. Our deco-
herence model is described in Section 3. For B = 1, the
resulting CTMC is illustrated in Figure 7.

The analysis of this model is almost identical to that of
the B = 1 system without decoherence. As with the latter,
the capacity region is bounded above by two lines:

y1 = −
µ(3k − 2)(α+ (k − 2)µ) + 2α2

µ(k − 2)((2k − 1)µ+ α)
x1 +

k(k − 1)µ2

(2k − 1)µ+ α
,

y2 = −
2(k − 1)2µ2 + (kµ+ α)((k − 2)µ+ 2α)

µ(k − 2)(kµ+ α)
x2 +

k(k − 1)µ2

kµ+ α
.

To avoid ambiguity, let C′2 and C′3 denote the bi- and tri-
partite capacities of a system with decoherence. As with the
previous model, C′2 is maximized at r1 = 1, r2 = r3 = 0;
C′3 is maximized at r1 = r3 = 0, r2 = 1, and the point
farthest from TDM is obtained by setting r1 = 0, r2 =
r3 = 1. The first bounding line passes through the points
(0, C′2(1, 0, 0)) and (C′3(0, 1, 1), C′2(0, 1, 1)); and the second
line passes through (C′3(0, 1, 1), C′2(0, 1, 1)) and (C′3(0, 1, 0), 0).
Moreover, all points on the bounding lines are achievable,
indicating that the bound is tight.



(a) k = 3 (b) k = 10

Figure 8: Capacity region for a system of buffer size one
and varying number of links k, decoherence rates α, and
entanglement generation rate µ = 1. The solid lines are the
upper boundaries of the capacity region, and the dashed are
TDM lines.
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Figure 9: Capacity region for a system of buffer size two
and varying number of links k, decoherence rates α, and
entanglement generation rate µ = 1. The solid lines are the
upper boundaries of the capacity region, and the dashed are
TDM lines.

The capacities are given by

C′2 = (k(k − 1)µ2 (2(αr1 + µr3) + (k − 2)µ(1− r2r̄1)))/D,

C′3 = (kµ3(k − 1)(k − 2)r̄1r2)/D, where

D = (k − 1)µr̄1((k − 2)µr2 + kµ)

+ (kµ+ (k − 1)µr1 + α)((k − 2 + 2r3)µ+ 2α).

Note that the denominator is quadratic in α. This causes
both C′2 and C′3 to tend to zero as α→∞.

Figure 8 shows a comparison of the capacity regions for
systems with B = 1, for three and ten links and different
decoherence rates. For all cases, µ is set to one: for qual-
itative results, we only need to concern ourselves with the
value of α relative to µ. In real scenarios, we expect α to be
at least one order of magnitude less than µ. From numeri-
cal results, we observe that the effect of decoherence on the
capacity region is not significant, especially as the number
of links grows. Analysis supports this observation, since we
can show that

lim
k→∞

C′2
C2

= 1 and lim
k→∞

C′3
C3

= 1.

Figure 9 shows a comparison for systems with B = 2 and
varying number of links and decoherence rates. Results are
consistent with that of the case B = 1: the effects of deco-
herence on capacity are less apparent for larger k values.

7. CONCLUSION
In this work, we explore a set of policies for a quantum

switch that can store up to two qubits per link and whose
objective is to perform bi- and tripartite joint measurements
to distribute two and three qubit entanglement to pairs and
triples of users. We present analytical results for the case
where the per-link buffer has size one. By comparing against
TDM policies, we discover that better policies in terms of
achievable bi- and tripartite capacities exist, but that as the
number of links grows, the advantage of using such poli-
cies diminishes. We also compare the capacity regions for
systems with different per-link buffer sizes and observe that
systems with fewer links benefit more from the extra storage
space than systems with a larger number of links. Finally,
we model decoherence for both types of systems and present
analytical results for the case with per-link buffer size one.
Observations and analysis show that as the number of links
increases, the effects of decoherence become less apparent.
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