
On the Analysis of Spatially Constrained
Power of Two Choice Policies∗

Nitish K. Panigrahy†, Prithwish Basu∗, Don Towsley†, Ananthram Swami§ and Kin K. Leung∗∗
†University of Massachusetts Amherst, MA, USA. Email: {nitish, towsley}@cs.umass.edu

∗Raytheon BBN Technologies, Cambridge, MA 02138, USA. Email: prithwish.basu@raytheon.com
§ Army Research Laboratory, Adelphi, MD 20783, USA. Email: ananthram.swami.civ@mail.mil

∗∗Imperial College London, London SW72AZ, UK. Email: kin.leung@imperial.ac.uk

ABSTRACT
We consider a class of power of two choice based assignment
policies for allocating users to servers, where both users and
servers are located on a two-dimensional Euclidean plane. In
this framework, we investigate the inherent tradeoff between
the communication cost, and load balancing performance of
different allocation policies. To this end, we first design and
evaluate a Spatial Power of two (sPOT) policy in which each
user is allocated to the least loaded server among its two ge-
ographically nearest servers sequentially. When servers are
placed on a two-dimensional square grid, sPOT maps to the
classical Power of two (POT) policy on the Delaunay graph
associated with the Voronoi tessellation of the set of servers.
We show that the associated Delaunay graph is 4-regular
and provide expressions for asymptotic maximum load us-
ing results from the literature. For uniform placement of
servers, we map sPOT to a classical balls and bins alloca-
tion policy with bins corresponding to the Voronoi regions
associated with the second order Voronoi diagram of the
set of servers. We provide expressions for the lower bound
on the asymptotic expected maximum load on the servers
and prove that sPOT does not achieve POT load balancing
benefits. However, experimental results suggest the efficacy
of sPOT with respect to expected communication cost. Fi-
nally, we propose two non-uniform server sampling based
POT policies that achieve the best of both the performance
metrics. Experimental results validate the effectiveness of
our proposed policies.

1. INTRODUCTION
Recent advances in technologies of smart devices, sensors

and embedded processors have enabled the deployment of
a large number of computational and storage resources in a

∗This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Defence Science and Technology
Laboratory under Agreement Number W911NF-16-3-0001
and by the NSF under grant NSF CNS-1617437. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. De-
fence Science and Technology Laboratory. This document
does not contain technology or technical data controlled un-
der either the U.S. International Traffic in Arms Regulations
or the U.S. Export Administration Regulations.

Copyright is held by author/owner(s).

physical space. We collectively call such a set of resources/
services a distributed service network. In a distributed ser-
vice network, for example, Internet of Things [2], these re-
sources are heavily accessed by various end users/applications
that are also distributed across the physical space.

An important design problem in such service networks is
the assignment of users/applications to appropriate servers/
resources. Often servers have limited computational capabil-
ities and can only serve a handful number of users. Hence for
such a system with very large number of users and servers,
an appropriate server selection strategy typically involves
minimizing the maximum number of users assigned to a
server, also known as the maximum load. While the op-
timal server selection problem can be solved centrally, due
to scalability concerns, it is often preferred to relegate the
assignment task to individual users themselves. This inter-
pretation leads to formulating a randomized load balancing
problem for the distributed service network with the goal to
make the overall user-to-server assignment as fair as possi-
ble. Many previous works [1, 8] have used randomization
as an effective tool to develop simple and efficient load bal-
ancing algorithms in non-geographic settings. A randomized
load balancing algorithm can be described as a classical balls
and bins problem as follows.

In the classical balls-and-bins model of randomized load
balancing, m balls are placed sequentially into n bins. Each
ball samples d bins uniformly at random and is allocated to
the bin with the least load with ties broken arbitrarily. It
is well known that when d = 1 and m = n, this assignment
policy results in a maximum load of O(logn/ log logn) with
high probability. However, if d = 2, then the maximum
load is O(log logn) w.h.p. [3]. Thus, there is an exponential
improvement in performance from d = 1 to d = 2. This
policy with d = 2 is widely known as Power of Two (POT)
choices and the improvement in maximum load behavior is
known as POT benefits [8].

While classical balls and bins based randomized load bal-
ancing can directly be used for user-to-server assignment in
a geographic setting, it is oblivious to the spatial distribu-
tion of servers and users. The spatial distribution of servers
and users in a service network is vital in determining the
overall performance of the service. For example, the Eu-
clidean distance between a user request and its allocated
server, also known as request distance, directly translates to
communication latency incurred by a user when accessing
the service. Also, in wireless networks, signal attenuation
is strongly coupled to request distance, therefore developing
allocation policies to minimize request distance can help re-

duce energy consumption. Thus the following natural ques-
tion arises. How do we design a load balancing policy that
captures the spatial distribution of users and servers?

In this work, we aim to answer this question. To this
end we propose a spatially motivated POT policy: spatial
POT (sPOT) in which each user is sequentially allocated to
the least loaded server among its two geographically near-
est servers. We assume both users and servers are placed
in a two-dimensional Euclidean plane. When both servers
and users are placed uniformly at random in the Euclidean
plane, we map sPOT to a classical balls and bins alloca-
tion policy with bins corresponding to the Voronoi regions
associated with the second order Voronoi diagram of the
set of servers. We show that sPOT performs better than
POT in terms of average request distance. However, a lower
bound analysis on the asymptotic expected maximum load
for sPOT suggests that POT load balancing benefits are not
achieved by sPOT. Inspired by the analysis of sPOT, we fur-
ther propose two assignment policies and empirically show
that these policies achieve the best of both request distance
and maximum load behavior.

Our contributions are summarized below:

1. Analysis of sPOT yielding lower bound expressions for
asymptotic expected maximum load.

• When servers are placed on a two-dimensional
grid, we model sPOT using POT on the Delaunay
graph associated with the Voronoi tessellation of
the set of servers.

• When users and servers are placed uniformly at
random on a 2-D region, we model sPOT as clas-
sical balls and bins allocation policy with bins
corresponding to the Voronoi regions associated
with the second order Voronoi diagram of the set
of servers.

2. Introduction of two non-uniform server sampling based
POT policies to improve load and request distance be-
havior.

• A candidate set based policy that samples k near-
est servers from a user and applies POT on the
candidate set.

• A non-uniform distance decaying sampling based
POT in which each user samples two servers with
probability inversely proportional to square of the
distance to the servers.

3. A simulation study validating the effectiveness of the
proposed policies.

The rest of this paper is organized as follows. The next
section contains some technical preliminaries. In Section 3
we formally analyze the load behavior of sPOT for different
server placement settings. In Section 4, we propose two non-
uniform server sampling based POT policies that achieve
both better load and request distance behavior. Finally, the
conclusion of this work and potential future work are given
in Section 5.

2. TECHNICAL PRELIMINARIES
We consider a distributed service network where users and

servers are located on a two-dimensional Euclidean plane D.

2.1 Users and Servers
The users: Users in the service network are denoted as the
set R with cardinality |R| = m. We assume users are placed
on a two-dimensional euclidean plane uniformly at random.

The servers: In a service network, each user is assigned to a
server from the server set S with cardinality |S| = n.We con-
sider two cases for placing the servers on a two-dimensional
euclidean plane, (i) Grid Placement: servers are placed on a
square grid topology embedded in Euclidean space R2. (ii)
Uniform placement: servers are placed uniformly at random
on the euclidean plane.

We consider the case where m = n. We define the follow-
ing user allocation strategies.

2.2 User Allocation Policies
A user-to-server allocation policy is defined as a mapping

π such that π : R→ S. In this paper, our goal is to analyze
the performance of various allocation policies defined in the
literature as follows.

• Power of One (POO): This policy assigns each user
to one of the servers chosen uniformly at random from
S.

• Power of Two (POT): In this policy, sequentially1

each user samples two servers uniformly at random
from S and is allocated to the least loaded server.

• Spatial Power of One (sPOO): This policy assigns
each user to its geographically nearest server.

We also propose new policies to reduce both the maximum
load and expected request distance. We define them as fol-
lows.

• Spatial Power of Two (sPOT): Each user is sequen-
tially allocated to the least loaded server among its two
geographically nearest servers.

• Candidate set based sPOT (k-sPOT): Each user
uniformly at random samples two servers from a can-
didate set consisting of its k geographically nearest
servers and is assigned to the leastly loaded server.

• Decay based Power of Two (dPOT): This policy
sequentially considers each user ri, samples two servers
from S (without replacement), each with probability
proportional to 1/d2

ip. Here, dip denotes the euclidean
distance between user ri and server sp. ri is then as-
signed to the server with the least load.

2.3 Performance Metric
To evaluate and characterize the performance of various

allocation policies, we consider the maximum asymptotic
(m → ∞) load across all servers and expected request dis-
tance as performance metrics.

Definition 1. Load on a server, s ∈ S, under allocation
policy π, is defined as Ls = |{r|π(r) = s, with r ∈ R}|.

Definition 2. Request distance of a user request r ∈ R
under allocation policy π, is defined as Dr = drπ(r). Here
drs denotes the euclidean distance between a user r and a
server s.
1We assume that the users can communicate among them-
selves in order to agree on a sequential order and such com-
munication cost between users is negligible.

2.4 Geometric Structures
We define the following geometric structures that are use-

ful constructs for analyzing various user allocation policies.

2.4.1 Voronoi Diagram
A Voronoi cell around a server s ∈ S is the set of points

in D that are closer to s than to any other server in S \ {s}
[4]. The Voronoi diagram VS of S is the set of Voronoi cells
of servers in S.

2.4.2 Delaunay Graph
The Delaunay graph, GS(X,E), associated with S is de-

fined as follows. Assign the vertex set X = S and add an
edge between servers u and v, i.e. e = (u, v) ∈ E only if the
Voronoi cells of u and v are adjacent.

2.4.3 Higher order Voronoi diagram
A pth order Voronoi diagram, H

(p)
S , is defined as partition

of D into regions such that points in each region have the
same p closest servers in S.

2.5 Majorization
We present a few definitions and basic results associated

with majorization theory that we apply to analyze sPOT
policy later in Section 3.2.

Definition 3. The vector x is said to majorize the vector
y (denoted x � y) if

k∑
i=1

x[i] ≥
k∑
i=1

y[i], k = 1, · · · , n− 1,

and

n∑
i=1

x[i] =

n∑
i=1

y[i] (1)

where x[i](or y[i]) is the ith largest element of x(or y).

Definition 4. A function f : Rn → R is called Schur-
convex if

x � y =⇒ f(x) ≥ f(y) (2)

Consider the following proposition (Chapter 11, [7])

Proposition 1. Let X be a random variable having the
multinomial distribution

Pr[X = x] =

(
n

x1, · · · , xn

)
n∏
i=1

pxii (3)

where x = (x1, ..., xn) ∈ {z : zi are nonnegative integers,
∑
zi =

n}. If φ is a Schur-convex function of X, then ψ(p) =
Epφ(X) is a Schur-convex function of p.

3. SPATIAL POWER OF TWO POLICY
We now analyze the load behavior of sPOT policy for var-

ious server placement settings. We assume users are placed
uniformly at random on D.

3.1 sPOT with Grid based server placement
Consider the case where servers are placed on a two di-

mensional square grid:
√
n ×
√
n on D with wrap-around.

Let B({s1, s2}, r) be the event that the two nearest servers
of r are in {s1, s2}. We prove the following Lemma.

Lemma 1. Let GS(X,E) denote the Delaunay graph as-
sociated with S when servers are placed on a two-dimensional
square grid. Then

Pr[B({si, sj}, r)] =

{
1
|E| , (si, sj) ∈ E;

0, otherwise.
(4)

Proof. Let A(s, r, l) denote the event that a random user
r ∈ R is lth closest to s ∈ S among all servers in S. Denote
NN(r) as the geographically nearest server of r. Thus we
have

Pr[B({si, sj}, r)] = Pr[A(si, r, 1)] Pr[A(sj , r, 2)|NN(r) = si]

+ Pr[A(sj , r, 1)] Pr[A(si, r, 2)|NN(r) = sj].
(5)

It is not difficult to show that all Voronoi cells in VS have
equal areas. As Pr[A(s, r, 1)] is proportional to the area of
the Voronoi cell surrounding s, we have

Pr[A(s, r, 1)] = 1/|S| ∀ s ∈ S. (6)

Without loss of generality (W.l.o.g.) consider a user r
placed uniformly at random on D as shown in Figure 1.
Denote 4ABC as the triangle associated with vertices A,B
and C. LetNN(r) = s3.We now evaluate Pr[A(s1, r, 2)|NN(r) =
s3]. Clearly, Pr[A(s1, r, 2)|NN(r) = s3] ∝ Area(4WXs3).
We also have

Area(4WXs3) = Area(4WZs3) = Area(4Y Xs3)

= Area(4ZY s3),

Therefore Pr[A(si, r, 2)|NN(r) = s3], for i ∈ {1, 2, 4, 5} are
all equal. Let NG(s) be the set of neighboring servers of a
server s ∈ S on the square grid. Thus, we have

Pr[A(sj , r, 2)|NN(r) = si] =

{
1
4
, sj ∈ NG(si);

0, otherwise,
(7)

Note that when sj ∈ NG(si), the Voronoi cells correspond-
ing to si and sj share an edge. In this case, by definition
(si, sj) ∈ E. Combining Equations (6) and (7) and substi-
tuting in Equation (5) we get

Pr[B({si, sj}, r)] =

{
1

2|S| , (si, sj) ∈ E;

0, otherwise,
(8)

Also, when servers are placed on a square grid, GS(X,E) is
4- regular. Thus the total number of edges is |E| = 2|X| =
2|S|. Substituting |S| = |E|/2 in Equation (8) gives us the
expression (4) and completes the proof.

We consider the following lemma presented in [5].

Lemma 2. Given a ∆-regular graph with n nodes repre-
senting n bins, if n balls are thrown into the bins by choosing
a random edge and placing into the smaller of the two bins
connected by the edge, then the maximum load is at least
Ω(log logn+ logn

log(∆ logn)
) with high probability of 1−1/nΩ(1).

We now prove the following theorem.

Theorem 1. Suppose servers are placed on a two dimen-
sional square grid :

√
n ×
√
n on D with wrap-around. Let

users be placed independently and uniformly at random on
D. Under sPOT, the maximum load over all servers is at
least Ω(logn

log logn
) with high probability of 1− 1/nΩ(1).

Figure 1: Second nearest region
for user r Figure 2: Delaunay Graph associated

with grid based server placement
Figure 3: Delaunay Graph associated
with uniform server placement

Proof. Suppose we map the set of servers to the bins and
the users to the balls. The delaunay graph GS is 4-regular.
Let e = (si, sj) be an edge in GS . From Lemma 1, it is clear
that each user (ball) selects an edge e with probability 1/|E|
(i.e. uniformly at random) and gets allocated to the smaller
of the two servers (bins) connected by e under sPOT policy.
Thus a direct application of Lemma 2 with ∆ = 4 proves
the theorem.

We verify the results in Lemma 1 through simulation for
a 2D square grid under sPOT policy as shown in Figure 2.
We assign n = 64 and empirically compute Pr[B({si, sj}, r)]
and denote it as edge probability on edge e on the Delaunay
graph. We also verify the Pr[A(s, r, 1)] in expression (6) and
denote it as vertex probability on the Delaunay graph. It
is clear from Figure 2 that the edge probabilities are almost
all equal and so are the vertex probabilities.

Remark 1. Note that, Theorem 1 ensures that no POT
benefit is observed when servers are placed on a two dimen-
sional square grid.

Remark 2. Note that Theorem 1 applies to other grid
graphs such as a triangular grid, i.e. no POT benefit is ob-
served when servers are placed on a two dimensional trian-
gular grid. The delaunay graph corresponding to a triangular
grid based server placement is 6- regular.

3.2 sPOT with Uniform server placement
We now consider the case when both users and servers

are placed uniformly at random on D. We no longer can
invoke Lemma 2. This is due to the fact that the Delaunay
graph associated with the servers is no longer regular. Also,
the edge sampling probabilities Pr[B(si, sj , r)] are no longer
equal. This is evident from our simulation results on the
corresponding Delaunay graph as shown in Figure 3. We
have n = 64 servers placed randomly in a 2D square and
empirically compute Pr[B({si, sj}, r)] and denote it as edge
probability on edge e on the Delaunay graph. Note that the
edge probabilities, i.e. Pr[B({si, sj}, r)], are all completely
different from each other. Also the Delaunay graph is not
regular. Thus we resort to using the second order Voronoi
diagram to analyze the maximum asymptotic load behavior.

Consider the second order Voronoi diagram: H
(2)
S associ-

ated with the set of servers S. We have the following Lemma
[Chapter 3.2, [9]].

sPOO sPOT POO POT

20

40

60

80

100

M
ax

im
um

 L
oa

d

(a) Maximum load

sPOO sPOT POO POT
0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
vg

.
R

eq
ue

st
 D

is
ta

nc
e

(b) Expected request distance

Figure 4: Performance comparison of basic allocation poli-
cies wrt (a) maximum load and (b) expected request dis-
tance for n = 10000 servers.

Lemma 3. The number of Voronoi cells in H
(2)
S under

uniform server placement is upper bounded by O(3n) .

We also have the following Lemma.

Lemma 4. Consider the following modified version of balls
and bin problem. Suppose there are n balls and n bins. Each
ball is thrown into one of the bins according to a probability
distribution p = (p1, · · · , pn) with pi being the probability of
each ball falling into bin i, in an independent manner. De-
note Z to be the random variable associated with the maxi-
mum number of balls in any bin. The we have

Ep[Z] ≥ k0
logn

log logn
as n→∞. (9)

where k0 is a scalar constant.

Proof. DenoteXi as the random variable associated with
the load for bin i. Clearly X = [X1, X2, · · · , Xn] follows
multinomial distribution

Pr[X = x] =

(
n

x1, · · · , xn

)
n∏
i=1

pxii (10)

We have Z = max(X1, · · · , Xn) = φ(X). Clearly, φ(x) =
max(x) is a schur convex function since max(x) = x[1] and
if x � y then x[1] ≥ y[1]. Also, we have (Chapter 1, [7]):
(p1, p2, · · · , pn) � (1/n, 1/n, · · · , 1/n). whenever pi ≥ 0 with∑n
i=1 pi = 1. Thus applying Proposition 1 yields Ep[Z] ≥

E(1/n,··· ,1/n)[Z] ≥ k0
logn

log logn
.

Theorem 2. Suppose both users and servers are placed
independently and uniformly at random on D. Under sPOT
policy, the expected maximum load over all servers is at least
Ω(logn

log logn
) with high probability of 1 − 1/nΩ(1), i.e., we do

not get POT benefits.

Proof. Consider the second order Voronoi diagram: H
(2)
S

associated with the set of servers S. W.l.o.g. consider a cell

{si, sj} in H
(2)
S . The probability that a user selects the

server pair {si, sj} as its two nearest servers is proportional
to the area of the cell {si, sj}. However, the area distribution

of cells in H
(2)
S is non-uniform (say with probability distri-

bution p). We can invoke classical balls and bins argument

on H
(2)
S as follows inspired by the discussion in [5]. We treat

each cell inH
(2)
S as a bin. Thus by Lemma 3, there are O(3n)

bins (or cells). Each ball (or user) choses a bin (or a cell)
from a distribution p and let Lp denote the expected maxi-
mum asymptotic load across the bins. Let LU denote the ex-
pected maximum asymptotic load across the bins when O(n)
balls are assigned to O(3n) bins with each ball choosing a
bin uniformly at random. From classical balls and bins the-
ory, LU = O(logn/ log log 3n) = O(logn/ log logn). Clearly,
by Lemma 4, we have Lp ≥ LU = O(logn/ log logn). Since
a cell consists of a server pair, one of the server pair cor-
responding to the maximum load would have load at least
(1/2)Lp. Thus the maximum load across all servers would
be at least (1/2)Lp ≥ O(logn/ log logn).

3.3 Tradeoff between Load and Request Dis-
tance

In this Section, we discuss the inherent tradeoff between
maximum load and expected request distance metric among
different allocation policies. We evaluate the performance of
sPOT as compared to other allocation policies. We consider
n = 10000 servers and an equal number of users placed at a
unit square uniformly at random. We ran 10 trials for each
policy. We compare the performance of various allocation
policies in Figure 4.

First, note that with respect to maximum load, the spa-
tial based policies perform worse compared to their clas-
sical counterparts. Note that the introduction of spatial
aspects into a policy increases its maximum load. For ex-
ample, sPOT performs worse than both POO and POT as
shown in Figure 4 (a). Since the maximum asymptotic load
for POO is O(logn/ log log n) with high probability, Figure
4 (a) validates our lower bound results obtained for sPOT
in Theorem 2.

However, the expected request distance is smallest for
sPOO and almost similar to that of sPOT. Also, both POT
and POO have very high and similar expected request dis-
tances as shown in Figures 4 (b). Both results shown in Fig-
ure 4 (a) and (b) combined, illustrate the tradeoff between
maximum load and expected request distance metric.

4. IMPROVING LOAD AND REQUEST DIS-
TANCE BEHAVIOR

In Section 3, we showed that for both grid and uniform
based server placement, sPOT does not provide POT ben-
efits. As POT is oblivious to the spatial aspect of user and
server distributions, it performs worse with respect to the
expected request distance metric. Thus there exists a trade-
off between maximum load and expected request distance
among different allocation policies.

(a) dPOT Load distribution (b) dPOT distance distribution

(c) POT Load distribution (d) sPOT distance distribution

(e) POT distance distribution

Figure 5: Performance comparison of allocation policies wrt
dPOT for n = 50000 servers. (a) and (b) plots are for dPOT
while (c),(e) and (d) for POT and sPOT respectively.

Note that for each user, once its arrival location is fixed,
the sampling of two servers in sPOT policy is determinis-
tic while it is completely random for POT. This random
sampling over the entire set of servers results in better load
behavior for POT than for sPOT. However, since random
sampling in POT is oblivious to the distances of servers from
the particular user, POT incurs very large expected request
distance. Thus if one can design a policy with random and
distance dependent sampling of servers, such a policy should
provide benefits of both POT and sPOT in terms of maxi-
mum load and expected request distance respectively. Below
we propose and evaluate two such policies to get benefits of
both POT and sPOT. We empirically show that they achieve
both POT like load benefits while having a request distance
profile similar to that of sPOT.

4.1 Decay based POT (dPOT)
Consider the allocation of a random user ri in the service

network. We propose a decay based POT (dPOT) policy to
allocate ri as follows. Under dPOT, ri samples two servers
from S (without replacement), each with probability pro-
portional to 1/d2

ip. Here, dip denotes the euclidean distance
between user ri and server sp. ri then gets allocated to the
server with the least load among sampled servers. This rule
is similar to the one used in small world routing [6]. Note
that, since the sampling probability of a server is inversely

A
vg

. M
ax

 L
oa

d

Number of Servers

(a)
A

vg
.

R
e

q
 D

is
t

Number of Servers

POT
dPOT
k-sPOT
sPOT

(b)

Figure 6: Performance comparison of k-sPOT with respect
to (a) expected maximum load and (b) expected request
distance.

proportional to its distance from ri, dPOT incurs a smaller
expected request distance compared to POT. Surprisingly,
dPOT achieves similar load behavior to that of POT. We
compare the performance of dPOT to sPOT and POT as
follows.

We perform a single simulation run for each of the policies:
dPOT, sPOT, POT and measure the distributions of load
values across all the servers and of the request distance. Fig-
ure 5 (a) shows the load distribution and Figure 5 (b) shows
the request distance distribution for dPOT. We plot the load
distribution for POT and request distance distribution for
sPOT in Figure 5 (c) and (d) respectively.

First we focus on the server loads in Figure 5 (a) and
(c). Interestingly, the load distributions are almost identical
for dPOT and POT. Similarly, sPOT performs better than
dPOT in terms of request distance distribution as shown
in Figure 5 (b) and (d)since they significantly favor closer
nodes. However, compared to POT (as shown in Figure 5
(e)), dPOT performs significantly better in terms of request
distances. Thus dPOT achieves the best of both worlds, i.e.,
low maximum load and low distances.

4.2 Candidate set based sPOT (k-sPOT)
We now propose a policy that improves the load behavior

of sPOT. We define Ck to be the candidate set (of size k)
consisting of k nearest servers for a particular user. Under
k-sPOT, the user selects two servers uniformly at random
from Ck and assigns itself to the leastly loaded one. Thus,
the formation of candidate set with the k nearest criteria
makes the sampling technique distance dependent. Also,
the random sampling of two servers within the candidate
set helps to balance load and reduce the overall maximum
load. Clearly sPOT and POT are two extremes of the policy
k-sPOT with k = 2 and k = n respectively. Below, we dis-
cuss the effect of k on maximum load and expected request
distance behavior and compare it to other policies.

Figure 6 (a) shows the growth of average maximum load
(averaged over 50 simulation runs for each point) as n is
varied from 100 to 40000. We observe that both dPOT
and POT perform the best. k-sPOT with k = logn per-
forms quite well compared to sPOT. Also, we have observed
through simulation that the average maximum load profiles
are very similar for k-sPOT with finite k to that of sPOT.
Based on these results, we present the following conjecture.

Conjecture 1. If the candidate set in k-sPOT does not
grow with n, no POT benefit is expected.

Figure 6 (b) shows how the average request distance drops
as n increases (since the node density increases). We observe

that, not surprisingly, sPOT outperform the rest. However,
k-sPOT with k = logn performs quite well. Thus k-sPOT
with k = O(logn) achieves good performance for both load
and request distance.

Remark 3. Note that, since dPOT selects servers through
distance based sampling, change in positions of servers the-
oretically requires choosing a new set of sampling distribu-
tions. However, sampling in k-sPOT depends on the log
neighborhood of the user, thus involves less frequent updates
for server sampling distributions.

5. CONCLUSION
In this work we considered a class of power of two choices

based allocation policy where both resources and users are
located on a two-dimensional plane. We analyzed the sPOT
policy and provided expressions for the lower bound on the
asymptotic maximum load on the resources. We claim that
for both grid and uniform based resource placement, sPOT
does not provide POT benefits. We proposed two non-
uniform euclidean distance based server sampling policies
that achieved the best load and request distance behavior.
Experimental results validate the effectiveness of our pro-
posed policies. Finally, going further, we aim at extending
our results to consider dynamic arrival of mobile users on
the euclidean plane.

6. REFERENCES
[1] M. Adler, S. Chakrabarti, M. Mitzenmacher, and

L. Rasmussen. Parallel randomized load balancing.
Random Structures and Algorithms, 13(2):159–188,
1998.

[2] L. Atzori, A. Iera, and G. Morabito. The Internet of
Things: A Survey. Computer Networks,
54(15):2787–2805, 2010.

[3] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal.
Balanced allocations. SIAM Journal on Computing,
29(1):180–200, 1999.

[4] B. A. Bash and P. J. Desnoyers. Exact Distributed
Voronoi Cell Computation in Sensor Networks. In
IPSN, 2007.

[5] K. K. and R. Panigrahy. Balanced Allocation on
Graphs. In SODA, 2006.

[6] J. M. Kleinberg. Navigation in a small world. Nature,
406(6798):845, 2000.

[7] A. W. Marshall and I. Olkin. Inequalities: Theory of
Majorization and its Applications. In In: Academic
Press, 1979.

[8] M. D. Mitzenmacher. The Power of Two Choices in
Randomized Load Balancing. In Ph.D. Dissertation,
Harvard University, 1996.

[9] A. Okabe, B. Boots, and K. Sugihara. Spatial
Tessellations Concepts and Applications of Voronoi
Diagrams. In New York: Wiley, 1992.

