
Network Speed Scaling

Rahul Vaze∗
School of Technology and Computer Science

Tata Institute of Fundamental Research
rahul.vaze@gmail.com

Jayakrishnan Nair
Department of Electrical Engineering

IIT Bombay

jayakrishnan.nair@iitb.ac.in

ABSTRACT
Speed scaling for a network of servers represented by a di-
rected acyclic graph is considered. Jobs arrive at a source
server, with a specified destination server, and are defined
to be complete once they are processed by all servers on
any feasible path between the source and the correspond-
ing destination. Each server has variable speed, with power
consumption function P , a convex increasing function of the
speed. The objective is to minimize the sum of the flow
time (summed across jobs) and the energy consumed by
all the servers, which depends on how jobs are routed, as
well as how server speeds are set. Algorithms are derived
for both the worst case and stochastic job arrivals setting,
whose competitive ratio depends only on the power func-
tions and path diversity in the network, but is independent
of the workload.

1. INTRODUCTION
Starting with the classical work [11], the speed scaling

problem has been widely studied in the literature, where
there is a single server or a parallel bank of servers with tune-
able speed, and the canonical problem is to find the optimal
service speed/rate for servers that minimizes a linear com-
bination of the flow time (total delay) and total energy [1],
called flow time plus energy, where flow time is defined as
the sum of the response times (departure minus the arrival
time) across all jobs.

Many interconnected practical systems such as assembly
lines, flow shops and job shops in manufacturing, traffic flow
in a network of highways, multihop telecommunications net-
works, and client-server computer systems, however, are bet-
ter modelled as network of queues/servers. Another impor-
tant example is service systems with server specific prece-
dence constraints, where jobs have to be processed by a
particular order of servers. In such systems, for each job,
service is defined to be complete once it has been processed
by a subset of servers, together with a permissible order
on service from different servers. However, in spite of the
extensive literature on speed scaling for a parallel bank of
servers (surveyed below), we are not aware of any work that
addresses speed scaling on a service network.

This paper takes the first steps towards designing speed

∗We acknowledge support of the Department of Atomic En-
ergy, Government of India, under project no. RTI4001

Copyright is held by author/owner(s).

scaling algorithms for a network of servers. Jobs correspond-
ing to different source destination pairs arrive into the net-
work, and are considered complete once they are served se-
quentially by all servers on a feasible (directed) path from
the source to the destination. There are three decision vari-
ables here: (i) routing, i.e., choosing the service path that
each job takes, (ii) scheduling, i.e., choosing which waiting
job each server processes, and (iii) speed scaling, i.e., decid-
ing the speed with which each server processes its jobs.

We consider the online scenario, where the algorithm has
only causal information about job arrivals that arrive ac-
cording to either an arbitrary or a stochastic process. In
the arbitrary (also called worst case) job arrival setting, the
job arrival sequence is arbitrary, and possibly adversarially
determined. In the arbitrary job arrivals case, the goal is
to minimize the algorithm cost, defined as a linear combi-
nation of the flow time (the sum total of the response times
of all jobs) and the total energy consumption, and the per-
formance metric is the competitive ratio, that is defined as
the maximum of the ratio of the cost of the online algorithm
and the optimal offline algorithm OPT that is revealed the
entire input sequence ahead of time, over all possible inputs.
In the stochastic setting, job arrivals occur according to a
stochastic process. Here, the cost of an algorithm is a linear
combination of the steady state averages of response time
and energy consumption per job. The competitive ratio of
an algorithm is in turn the ratio of its cost to that of the
optimal algorithm (that admits the above steady state av-
erages). In both settings, the goal is to design algorithms
that have a small competitive ratio.

2. MAIN RESULTS
The contributions of this paper are summarized below.

Arbitrary input: In the worst case setting, jobs cor-
responding to each source destination pair (a.k.a., flow) ar-
rive at the source at arbitrary times, the arrival times being
possibly chosen by an adversary. For the most part, we make
the simplifying assumption that each job has the same (unit,
without loss of generality) size (a.k.a, service requirement)
on any server. Indeed, even in the single server setting, ini-
tial progress was made assuming unit sized jobs (see [1, 8, 4,
6, 2]), which was later generalized for arbitrary job sizes [3,
5]. In the network setting, this problem is even harder, with
additional complications arising from from precedence con-
straints between servers, dynamic routing, as well as intra-
flow and inter-flow congestion. Throughout, we also assume
that all servers have the same power function P (.) (though
this is generalized in the stochastic setting).



We consider three specific network models in this paper,
in increasing order of generality.
Tandem network with single source destination pair:
This is the simplest network setting, with multiple servers
(K) in series. Each external job arrives at server 1, and is
defined to be complete once it has been processed by each of
the K servers in series. Let n1(t) be the number of outstand-
ing jobs with server 1, and let the total number of servers
with outstanding jobs (called active) be A(t) excluding the
first server. Then the algorithm runs each active server (in-

cluding server 1) at the same speed of P−1
(
n1(t)+A(t)+1

A(t)+1

)
.

Thus, the total power consumed across all servers is equal to
the number of total outstanding jobs plus 1. We show that
this algorithm is constant competitive, with a competitive
ratio that depends only on the power function. Crucially,
the competitive ratio does not depend on the size of the
tandem network.

We also show that the preceding analysis can be extended
to the case where job sizes are arbitrary in the burst setting,
i.e., all jobs are available at time 0.
Single source destination pair, multiple parallel paths:
Next, we consider the setting where is single source destina-
tion pair with multiple parallel paths. When each parallel
path has the same length, we propose an algorithm that has
constant competitive ratio similar to the tandem setting. If
the available parallel paths have different lengths, our com-
petitive ratio depends on the path diversity.
Multiple source destination pairs, multiple paral-
lel paths: Finally, we consider the general case where the
service network is shared by different flows. Note that in
this model, different flows corresponding to distinct source-
destination pairs can ‘intersect’ at a server. Our competitive
ratio in this case is a function of the maximum degree across
servers, where the degree of a server is the number of active
paths belonging to distinct source-destination pairs going
through that server. Importantly, the competitive ratio is
independent of the size of the network, the number of flows
(source-destination pairs) or the number of jobs for each
flow.
Stochastic input: In the stochastic setting, we con-
sider a more general service network, where each flow is as-
sociated with a set of (possibly intersecting) feasible paths.
Each server j has its own power function Pj(.). For most
part we consider, Pj(s) = γjs

αj . The external arrivals cor-
responding to each flow are assumed to follow a Poisson
process, and service times at each server being expoentially
distributed. Our algorithm routes each flow based on the
solution of a certain convex program, and employs a sim-
ple ‘gated’ static speed. This makes the queueing system a
feedforward Jackson network with Poisson arrivals at each
server [7]. We show that the proposed algorithm has a con-
stant competitive ratio of θ1θ2, where θ1 only depends on the
power functions P ′js, while θ2 depends on the path diversity
in the network.

The factor θ1 in the competitve ratio bound depends only
on the server power functions P ′js, where Pj(s) = γjs

αj . If
αj = α and γj = 1 for all servers j, then θ1 = 1 + 2γj +
max(1, 2αj−2), which evaluates to 5 for α = 2 and 7 for α =
3. This bound can be further tightened for smaller values
of α by modifying the speed scaling rule. For example, the
alternative speed scaling rule proposed in [9] would result in
θ1 = 2 (without affecting θ2) for α = 2.

The factor θ2 depends on the network topology, the path
diversity for different flows, and the server costs (which de-
pend on the power functions). In particular,

θ2 = max
i∈flows

θ2i,

where for flow i, θ2i =
∑
pi∈paths for flow i λ

?
pi

Lpi

Lmin
i

, where λ?i

is the fraction of jobs routed along path pi, where routing is
based on the solution

If there is only one permissible path for each flow, then
θ2 = 1. More generally, for each flow f , if the ratio of the
length of any path for f and the length of the shortest path
for f is upper bounded by a constant c, then θ2 ≤ c. Thus,
for a balanced network, θ2 is bounded. If the network is
not bounded, i.e., the length of some path p is ’much longer’
than the shortest path for a flow, then the routing algorithm
will allocate only a small fraction of traffic to p, and then
again θ2 will be small.

For all theorem statements and proofs, we refer to the full
version [10].

3. REFERENCES
[1] S. Albers and H. Fujiwara. Energy-efficient algorithms

for flow time minimization. ACM Transactions on
Algorithms (TALG), 3(4):49, 2007.

[2] S. Albers, F. Müller, and S. Schmelzer. Speed scaling
on parallel processors. Algorithmica, 68(2):404–425,
2014.

[3] L. L. H. Andrew, M. Lin, and A. Wierman.
Optimality, fairness, and robustness in speed scaling
designs. In Proc. ACM SIGMETRICS, 2010.

[4] N. Bansal, H.-L. Chan, T.-W. Lam, and L.-K. Lee.
Scheduling for speed bounded processors. In
International Colloquium on Automata, Languages,
and Programming, pages 409–420. Springer, 2008.

[5] N. Bansal, H.-L. Chan, and K. Pruhs. Speed scaling
with an arbitrary power function. In ACM-SIAM
symposium on discrete algorithms, 2009.

[6] N. Bansal, K. Pruhs, and C. Stein. Speed scaling for
weighted flow time. SIAM Journal on Computing,
39(4):1294–1308, 2009.

[7] M. Harchol-Balter. Performance modeling and design
of computer systems: queueing theory in action.
Cambridge University Press, 2013.

[8] T.-W. Lam, L.-K. Lee, I. K. To, and P. W. Wong.
Speed scaling functions for flow time scheduling based
on active job count. In European Symposium on
Algorithms, pages 647–659. Springer, 2008.

[9] R. Vaze and J. Nair. Multiple server SRPT with speed
scaling is competitive. IEEE/ACM Transactions on
Networking, 28(4):1739–1751, 2020.

[10] R. Vaze and J. Nair. Network speed scaling.
Performance Evaluation, page 102145, 2020.

[11] F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced cpu energy. In Annual Symposium
on Foundations of Computer Science, 1995.


