
Sliding-Window QPS (SW-QPS): A Perfect Parallel Iterative
Switching Algorithm for Input-Queued Switches

Jingfan Meng
Georgia Tech

jmeng40@gatech.edu

Long Gong
Georgia Tech

gonglong@gatech.edu

Jun (Jim) Xu
Georgia Tech

jx@cc.gatech.edu

ABSTRACT
In this work, we first propose a parallel batch switching al-
gorithm called Small-Batch Queue-Proportional Sampling
(SB-QPS). Compared to other batch switching algorithms,
SB-QPS significantly reduces the batch size without sacrific-
ing the throughput performance and hence has much lower
delay when traffic load is light to moderate. It also achieves
the lowest possible time complexity of O(1) per matching
computation per port, via parallelization. We then propose
another algorithm called Sliding-Window QPS (SW-QPS).
SW-QPS retains and enhances all benefits of SB-QPS, and
reduces the batching delay to zero via a novel switching
framework called sliding-window switching. In addition,
SW-QPS computes matchings of much higher qualities, as
measured by the resulting throughput and delay perfor-
mances, than QPS-1, the state-of-the-art regular switching
algorithm that builds upon the same underlying bipartite
matching algorithm.

Keywords
Switching, input-queued switch, bipartite matching

1. INTRODUCTION
Many present day switching systems in Internet routers

and data-center switches employ an input-queued crossbar
to interconnect their input ports and output ports. In an
N × N input-queued crossbar switch, each input port has
N Virtual Output Queues (VOQs). A VOQ j at input port
i serves as a buffer for the packets going into input port i
destined for output port j.

In an N×N input-queued crossbar switch, each input port
can be connected to only one output port and vice versa in
each switching cycle or time slot. Hence, in every time slot,
the switch needs to compute a one-to-one matching (i.e.,
the crossbar schedule) between input and output ports . A
major research challenge of designing high-link-rate switches
with a large number of ports (called high-radix [3]) is to de-
velop switching algorithms that can compute “high quality”
matchings – those that result in high switch throughput and
low queueing delays for packets – in a short time slot.

1.1 Existing Approaches
While many switching algorithms have been proposed

for input-queued switches, they either have a (relatively)

Copyright is held by author/owner(s).

high time complexity that prevents a matching computa-
tion from being completed in a short time slot, or cannot
produce high-quality matchings that translate into excel-
lent throughput and delay performances. For example, the
widely-used iSLIP algorithm [13] can empirically achieve
over 80% throughputs under most of traffic patterns, as will
be shown in §6.2. However, even with a parallel iterative
implementation, its time complexity per port is O(log2 N),
which is still too high when the switch size N is large and
the time slot is short (say a few nanoseconds long).

It is possible to improve the quality of the matching with-
out increasing the time complexity of the switching algo-
rithm using a strategy called batching [1, 16, 18]. Unlike in
a regular switching algorithm, where a matching decision
is computed for every time slot, in a batch switching algo-
rithm, multiple (say T) consecutive time slots are grouped as
a batch and these T matching decisions are batch-computed.
Each matching under computation has a period of T time
slots to find opportunities to improve the quality of the
matching by the underlying bipartite matching algorithm,
whereas in a regular switching algorithm, it only has one
time slot for such opportunities. Hence, a batch switching
algorithm can usually produce matchings of higher qualities
(and the quality is better when T is larger) than a regu-
lar switching algorithm using the same underlying bipartite
matching algorithm, because the opportunities do not all
present themselves in a single designated time slot.

However, existing batch switching algorithms are not
without shortcomings. They all suffer from at least one of
the following two problems. First, all existing batch switch-
ing algorithms except [18] are serial algorithms and it is not
known whether any of them can be parallelized. As a result,
they all have a time complexity of at least O(N) per match-
ing computation, since it takes O(N) time just to “print out”
the computed result. This O(N) time complexity is clearly
too high for high-radix high-line-rate switches as just ex-
plained. Second, most existing switching algorithms require
a large batch size T to produce high-quality matchings that
can lead to high throughputs, as will be elaborated in §5.
A large batch size T is certain to lead to poor delay perfor-
mance: Regardless of the offered load condition, the average
packet delay for any batch switching algorithm due to batch-
ing is at least T/2, since any packet belonging to the current
batch has to wait till at least the beginning of the next batch
to be switched.

1.2 Our Contributions
The first contribution of this work is a novel batch switch-

ing algorithm, called SB-QPS (Small-Batch QPS), that ad-

dresses both weaknesses of existing batch switching algo-
rithms. First, it can attain a high throughout of over 85%,
under various traffic load patterns, using only a small batch
size of T = 16 time slots. This much smaller batch size
translates into much better delay performances than those of
existing batch switching algorithms, as will be shown in §6.3.
Second, SB-QPS is a fully distributed algorithm so that the
matching computation load can be efficiently divided evenly
across the 2N input and output ports. As a result, its time
complexity is the lowest possible: O(1) per matching com-
putation per port.

The design of the SB-QPS algorithm is extremely simple.
Only T rounds of request-accept message exchanges by the
input and the output ports are required for computing the
T matchings used (as the crossbar configurations) in a batch
of T time slots. In each round, each input port i sends a
pairing request to an output port that is sampled (by input
port i) in a random queue-proportional fashion: Each out-
put port j is sampled with a probability proportional to the
length of the corresponding VOQ. For this reason, we call
this algorithm small-batch QPS (queue-proportional sam-
pling). Since each QPS operation can be performed in O(1)
time using a simple data structure as shown in [9], the time
complexity of SB-QPS is O(1) per matching computation
per port. As will be explained in §3.2, the way QPS is used
in this work (SB-QPS) is very different than that in [9]. For
one thing, whereas in [9] QPS is used as an auxiliary com-
ponent to other switching algorithms such as iSLIP [13] and
SERENA [7], in this work, QPS serves the primary building
block for SB-QPS.

Even though SB-QPS has a much smaller batching de-
lay than other batch switching algorithms due to its much
smaller T , the batching delay accounts for the bulk of the to-
tal packet delay under light to moderate traffic loads, when
all other delays are comparatively much smaller. The sec-
ond contribution of the work is a novel switching algorithm
called SW-QPS (SW for sliding window) that inherits and
enhances all the good features of SB-QPS yet pays zero
batching delay. More precisely, it has the same O(1) time
complexity as and achieves strictly better throughput and
delay performances than SB-QPS.

SW-QPS does so by solving the switching problem un-
der a novel framework called sliding-window switching. A
sliding-window switching algorithm is different than a batch
algorithm only in the following aspect. In a batch switch-
ing algorithm, a batch of T matchings are produced every T
time slots. In contrast, in a sliding-window switching algo-
rithm, each window is still of size T but a single matching is
produced every time slot just like in a regular switching al-
gorithm. More precisely, at the beginning of time slot t, the
sliding window contains matchings-under-computation for
the T time slots t, t + 1, · · · , t + T − 1. The “leading edge
of the window”, corresponding to the matching for the time
slot t (the “senior class”), “graduates” and is used as the
crossbar configuration for the current time slot t. Then at
the end of time slot t, a new and currently empty matching
is added to the “tail end of the window” as the “freshman
class”. This matching will be computed in the next T time
slots and hopefully becomes a high-quality matching by the
time t + T , when it “graduates”. SW-QPS completely re-
moves the batching delay because “it graduates a class every
year” and furthermore always schedules an incoming packet
to “graduate” at the earliest “year” possible.

We consider SW-QPS to be the only research outcome
of this work, since it strictly outperforms SB-QPS. How-
ever, we describe both SB-QPS and SW-QPS in detail for
two reasons. First, the incremental contributions of SB-
QPS over existing batch switching algorithms and that of
SW-QPS over SB-QPS are orthogonal to each other: The
former is to significantly reduce the batch size without sac-
rificing the throughput performance much and to reduce the
time complexity to O(1) via parallelization, whereas the lat-
ter is to retain the full benefits of batching without paying
the batching delay. Second, thanks to this orthogonality, ex-
plaining the differences between SB-QPS and existing batch
switching algorithms and that between SW-QPS and SB-
QPS separately and incrementally makes the presentation
much easier, as will become apparent in §3 and §4.

The rest of this paper is organized as follows. In §2, we
state assumptions and the problem model used in this work.
§3 and §4 detail the SB-QPS and SW-QPS algorithms re-
spectively. In §5, we survey the related works. Then, we
evaluate the performances of SB-QPS and SW-QPS in §6
and in §7, we conclude this paper.

2. ASSUMPTIONS AND PROBLEM
MODEL

In this work, we make the following two assumptions that
are widely adopted in the literature (e.g., [10, 13]). First,
we assume that all incoming variable-length packets are
first segmented into fixed-length packets, which are then re-
assembled before leaving the switch. Hence, we consider
the switching of only fixed-length packets in the sequel, and
each such fixed-length packet takes exactly one time slot to
transmit. Second, we assume that input ports, output ports
and the crossbar operate at the same speed.

An N × N input-queued crossbar can be modeled as a
weighted bipartite graph, of which the two disjoint vertex
sets are the N input ports and the N output ports respec-
tively. We note that the edge set in this bipartite graph
might change from a time slot to another. In this bipartite
graph during a certain time slot t, there is an edge between
input port i and output port j, if and only if the jth VOQ
at input port i, the corresponding VOQ, is nonempty (at
t). The weight of this edge is defined as the length of (i.e.,
the number of packets buffered at) this VOQ. A set of such
edges constitutes a valid crossbar schedule, or a matching, if
any two of them do not share a common vertex.

3. SMALL-BATCH QPS

3.1 Batch Switching Algorithms

O1 O2 · · · ON

1 I3 I7 · · · I1

2 I5 – · · · I3

...
T – I5 · · · I2

Figure 1: A joint calendar. “–” means unmatched.

Since Small-Batch QPS (SB-QPS) is a batch switching

algorithm [1, 16, 18], we first provide some background on
batch switching. In a batch switching algorithm, the T
matchings for a batch of T future time slots are batch-
computed. These T matchings form a joint calendar (sched-
ule) of the N output ports that can be encoded as a T ×N
table with TN cells in it, as illustrated by an example shown
in Figure 1. Each column corresponds to the calendar of an
output port and each row a time slot. The content of the cell
at the intersection of the tth row and the jth column is the
input port that Oj is to pair with during the tth time slot
in this batch. Hence, each cell also corresponds to an edge
(between the input and the output port pair) and each row
also corresponds to a matching (under computation for the
corresponding time slot). In the example shown in Figure 1,
output port O1 is to pair with I3 during the 1st time slot (in
this batch), I5 during the 2nd time slot, and is unmatched
during the T th time slot.

At each input port, all packets that were in queue before
a cutoff time (for the current batch), including those that
belong to either the current batch, or previous batches but
could not be served then, are waiting to be inserted into
the respective calendars (i.e., columns of cells) of the cor-
responding output ports. The design objective of a batch
switching algorithm is to pack as many such packets across
the N input ports as possible into the TN cells in this joint
calendar. After the computation of the current joint calen-
dar is completed, the T matchings in it will be used as the
crossbar configurations for a batch of T future time slots. In
the meantime, the switch is switching packets according to
the T matchings specified in a past joint calendar that was
computed earlier.

3.2 The SB-QPS Algorithm
In this section, we describe in detail SB-QPS, a batch

switching algorithm that uses a small constant batch size
T that is independent of N . SB-QPS is a parallel itera-
tive algorithm: The input and output ports run T QPS-like
iterations (request-accept message exchanges) to collabora-
tively pack the joint calendar. The operation of each iter-
ation is extremely simple: Input ports request for cells in
the joint calendar, and output ports accept or reject the re-
quests. More precisely, each iteration of SB-QPS, like that
of QPS [9], consists of two phases: a proposing phase and
an accepting phase.
Proposing Phase. We adopt the same proposing strategy
as in QPS [9]. In this phase, each input port, unless it has no
packet to transmit, proposes to exactly one output port that
is decided by the QPS strategy. Here, we will only describe
the operations at input port 1; those at any other input port
are identical. Like in [9], we denote by m1,m2, · · · ,mN the
respective queue lengths of the N VOQs at input port 1,
and by m their sum (i.e., m ,

∑N
k=1 mk). At first, input

port 1 simply samples an output port j with probability
mj/m, i.e., proportional to mj , the length of the corre-
sponding VOQ; it then sends a proposal to output port j.
The content of the proposal in SB-QPS is slightly different
than that in QPS. In QPS, the proposal contains only the
VOQ length information (i.e., the value mj), whereas in SB-
QPS, it contains also the following availability information
(of input port 1): Out of the T time slots in the batch, what
(time slots) are still available for input port 1 to pair with an
output port? The time complexity of this QPS operation,
carried out using the data structure proposed in [9], is O(1)

per input port.
Accepting Phase. In SB-QPS, the accepting phase at an
output port is quite different than that in QPS [9]. Whereas
the latter allows at most one proposal to be accepted at any
output port (as QPS is a part of a regular switching algo-
rithm that is concerned with only a single time slot at a
time), the former allows an output port to accept multiple
(up to T) proposals (as each output port has up to T cells
in its calendar to be filled). Here, we describe the accepting
phase at output port 1; that at any other output port is
identical. The operations at output port 1 depend on the
number of proposals it receives. If output port 1 receives ex-
actly one proposal from an input port (say input port i), it
tries to accommodate this proposal using an accepting strat-
egy we call First Fit Accepting (FFA). The FFA strategy is
to match in this case input port i and output port 1 at the
earliest time slot (in the batch of T time slots) during which
both are still available (for pairing); if they have “schedule
conflicts” over all T time slots, this proposal is rejected. If
output port 1 receives proposals from multiple input ports,
then it first sorts (with ties broken arbitrarily) these propos-
als in a descending order according to their corresponding
VOQ lengths, and then tries to accept each of them using
the FFA strategy.

In SB-QPS, opportunities – in the form of proposals from
input ports – can arise, throughout the time window (up to
T time slots long) for computing the join calendar, to fill
any of its TN cells. As explained earlier, this “capturing
every opportunity” to fill the joint calendar allows a batch
switching algorithm to produce matchings of much higher
qualities than a regular switching algorithm that is based
on the same underlying bipartite matching algorithm can.
Indeed, SB-QPS significantly outperforms QPS-1, the reg-
ular switching algorithm that is based on the same QPS
bipartite matching primitive, as we will show in §6.
Time Complexity. The time complexity for the accepting
phase at an output port is O(1) even in the worst case,
because like in [9], we can let the output port drop (“knock
out”) all proposals except the earliest few (say 3) to arrive.
In this work, we indeed set this threshold to 3 and find that it
has a negligible effect on the quality of resulting matchings.

We now explain how to carry out an FFA operation in
O(1) time. In SB-QPS, we encode the availability informa-
tion of an input port i as a T -bit-long bitmap, one bit for
one time slot. Since the batch size T in SB-QPS is a small
constant (say T=16), the availability bitmap can fit into a
single CPU word. FFA consists of only two instructions: a
bitwise-AND (suppose a 1 bit means being available), and
a “finding the first 1” instruction that is supported by most
modern CPUs. Each instruction only takes O(1) time.

To summarize, the worst-case time complexity of SB-QPS
is O(T) per input or output port for the joint calendar con-
sisting of T matchings (O(1) for each matching), since SB-
QPS runs T iterations and each iteration has O(1) worst-
case time complexity per input or output port.
Message Complexity. The message complexity of each
“propose-accept” iteration is O(1) messages per input or
output port, because each input port sends at most one
proposing message per iteration and each output port sends
out at most 3 acceptance messages (where 3 is the “knock-
out” threshold explained above). Each proposing message is
T+dlog2 W e bits long (T bits for encoding the availability in-
formation and dlog2 W e bits for encoding the corresponding

VOQ length), where W is the longest possible VOQ length.
Each acceptance message is dlog2 T e bits long (for encoding
the time slot the pairing is to be made).

4. SLIDING-WINDOW QPS
In this section, we present in detail the Sliding-Window

QPS (SW-QPS) algorithm, the final and only research prod-
uct of this work. Before we do so, we describe next the
sliding-window framework that SW-QPS builds on.

4.1 Sliding-Window Switching

time slots· · ·· · · · · ·
t t+1 t+T-1 t+T

current window

next window

Figure 2: Sliding-window switching.

As mentioned earlier, the only difference between SW-
QPS and SB-QPS is that SW-QPS changes the batch switch-
ing operation of SB-QPS to a sliding-window switching oper-
ation. Sliding-window switching combines regular switching
with batch switching and gets the better of both worlds, as
follows. On one hand, during each time slot, under a sliding-
window switching operation, there are T matchings under
computation, just like under a batch switching operation.
Each such matching has had or will have a window of T
time slots to find opportunities to have its quality improved
by the underlying bipartite matching algorithm before it
“graduates”. Hence, each such matching, when it “gradu-
ates”, can have a similar or even better quality than that
computed by the batch switching algorithm that is based on
the same underlying bipartite matching algorithm, as will be
confirmed in §6.

On the other hand, under a sliding-window switching op-
eration, the “windows of opportunities” of these T match-
ings are staggered so that one matching (“class”) is output
(“graduated”) every time slot. This matching is to be used
as the crossbar configuration for the current time slot. In
this respect, it behaves like a regular switching algorithm
and hence completely eliminates the batching delay of the
batch switching. More specifically, at the beginning of time
slot t, the most senior matching (“class”) in the window
was added (“enrolled”) to the window at the end of time
slot t− T − 1 and is to “graduate” at the beginning of time
slot t, so its “window of opportunity” (to have its quality
improved) is [t − T, t − 1]. The “window of opportunity”
for the second most senior matching is [t− T + 1, t] and so
on. At the end of time slot t, a “freshman class” (an empty
matching) is “enrolled” and scheduled to “graduate” at time
slot t + T + 1 in the future.

Figure 2 shows how the sliding window evolves from time
slot t to time slot t+ 1. In Figure 2, each interval along the
timeline corresponds to a “class”. As shown in Figure 2, at
the beginning of time slot t, the current window contains
“classes of years” (matchings-under-computation to be used
as crossbar schedules for time slots) t, t+1, · · · , and t+T−1.
Then, at the beginning of time slot t+1, the current window
slides right by 1 (time slot), and the new window contains
“classes of years” t + 1, t + 2, · · · , and t + T , because the

“class of year t” just graduated and the “class of year t+T”
was just “enrolled”.

In theory, almost any batch switching algorithm can
be converted into a sliding-window switching algorithm by
making the “windows of opportunity” for the batch of T
matchings-under-computation staggered instead of aligned.
This conversion would in general improve switching per-
formance by eliminating the batching delay. Hence, this
sliding-window switching framework is itself a separate con-
tribution of this work.

4.2 The SW-QPS Algorithm
SW-QPS is exactly such a conversion of the batch switch-

ing algorithm SB-QPS into a sliding-window switching algo-
rithm. SW-QPS is also a parallel iterative algorithm whose
each iteration is identical to that of SB-QPS. Hence SW-
QPS has the same O(1) time and O(1) message complexi-
ties (per port per matching computation) as SB-QPS. The
only major difference is that, SW-QPS “graduates” a match-
ing every time slot whereas SB-QPS “batch-graduates” T
matchings every T time slots. This “graduating a class each
year” allows SW-QPS to completely eliminate the batching
delay. As explained earlier, in SW-QPS, at the beginning of
time slot t, the joint calendar consists of the T matchings-
under-computation that are to “graduate” in “years” (time
slots) t, t + 1, · · · , t + T − 1 respectively. Hence at time
slot t, the T -bit-long availability bitmap of an input port i
indicates the availabilities of i during [t, t + T − 1].

Note that SW-QPS inherits the FFA (First Fit Accept-
ing) strategy of SB-QPS that is to arrange for an input-
output pairing – and hence the switching of a packet be-
tween the pair – at the earliest mutually available time slot.
In other words, an incoming packet is always “advanced to
the most senior class that it can fit in schedule-wise” so that
it can “graduate” at the earliest “year” possible. This greedy
strategy further reduces the queueing delay of a packet, as
will be shown in §6.

5. RELATED WORK
In this section, we provide a brief survey of prior studies

that are directly related to ours.
Regular Switching Algorithms. Using MWM (Maxi-
mum Weighted Matching) as crossbar schedules is known to
result in 100% switch throughput and near-optimal queue-
ing delays under various traffic patterns [14], but each MWM
takes O(N2.5 logW) time to compute using the state-of-the-
art algorithm [4], where W is the maximum possible length
of a VOQ. Motivated by this, various parallel exact or ap-
proximate MWM algorithms (e.g., [2,5]) have been proposed
to reduce its time complexity. However, the time complex-
ities of all these algorithms above are still too high to be
used in high-line-rate high-radix switches.

The family of parallel iterative algorithms [10–13] gener-
ally has a low time complexity per port. However, their
throughput and delay performances are generally much
worse than those of MWM. We note that QPS-r [10], the
state-of-the-art algorithm in this family, also builds on
QPS [9]. It simply runs r (a small constant) iterations of
QPS to arrive at a final matching. We will compare our
SB-QPS and SW-QPS with it in §6.
Batch Switching Algorithms. Most of the existing batch
switching algorithms [1, 16, 18] model the process of pack-
ing the joint calendar as an edge-coloring problem, but

until now, most practical solutions to the latter problem
are centralized and have high complexity. For example,
the Fair-Frame algorithm [16] based on the Birkhoff von
Neumann Decomposition (BvND) has a time complexity of
O(N1.5 logN) per matching computation.

A recent work, based on parallel edge coloring, has been
proposed in [18]. It pushes the per-port time complexity
(per matching computation) down to O(logN). It requires
a bath size of only O(logN), but as mentioned in §1, the
constant factor hidden in the big-O is very large.

6. PERFORMANCE EVALUATION
In this section, we evaluate, through simulations, the

throughput and delay performances of SB-QPS and SW-
QPS under various load conditions and traffic patterns. Our
algorithms are compared against iSLIP [13], which runs
log2 N request-grant-accept iterations and is hence much
more expensive computationally. Our algorithms are also
compared against QPS-1 (QPS-r with r=1 iteration) [10].
This is a fair comparison because QPS-1, like our algorithms,
runs only a single iteration to compute a matching. The
MWM algorithm, which delivers near-optimal delay perfor-
mance [17], is also compared against as a benchmark.

6.1 Simulation Setup
In our simulations, we fix the number of input and out-

put ports N to 64; we however will investigate in Appendix
A.1 in [15], how the mean delay performances of these al-
gorithms scale with respect to N . To accurately measure
throughput and delay, we assume that each VOQ has an in-
finite buffer size, so no packet is dropped at any input port.
Each simulation run follows the stopping rule in [6, 8]: The
number of time slots simulated is at least 500N2 and guar-
antees the difference between the estimated and the actual
average delays to be within 0.01 time slots with at least 0.98
probability.

We assume in our simulations that each traffic arrival ma-
trix A(t) is i.i.d. Bernoulli with its traffic rate matrix equal
to the product of the offered load and a traffic pattern ma-
trix (defined next). Similar Bernoulli arrivals were studied in
[7,9,13]. Later, in Appendix A.2 in [15], we will look at burst
traffic arrivals. Note that only synthetic traffic (instead of
that derived from packet traces) is used in our simulations
because, to the best of our knowledge, there is no mean-
ingful way to combine packet traces into switch-wide traffic
workloads. The following four standard types of normalized
(with each row or column sum equal to 1) traffic patterns are
used: (I) Uniform: packets arriving at any input port go to
each output port with probability 1

N
. (II) Quasi-diagonal :

packets arriving at input port i go to output port j= i with
probability 1

2
and go to any other output port with proba-

bility 1
2(N−1)

. (III) Log-diagonal : packets arriving at input

port i go to output port j = i with probability 2(N−1)

2N−1
and

go to any other output port j with probability equal 1
2

of the
probability of output port j− 1 (note: output port 0 equals
output port N). (IV) Diagonal : packets arriving at input
port i go to output port j = i with probability 2

3
, or go to

output port (imodN) + 1 with probability 1
3
. These traffic

patterns are listed in order of how skewed the volumes of
traffic arrivals to different output ports are: from uniform
being the least skewed, to diagonal being the most skewed.

When implementing SB-QPS and SW-QPS, we have to

first decide on the value of batch (for SB-QPS) or window
(for SW-QPS) size T . As explained earlier in §1, a larger T
generally results in matchings of higher qualities and hence
leads to better throughput performances. However, a larger
T results in higher message complexities and longer batching
delays (for SB-QPS only). Through simulations (results not
shown here in the interest of space), we have found that
T = 16 strikes a nice performance-cost tradeoff for SW-
QPS: The proposal message size is small when T = 16, yet
the throughput gains when increasing T beyond 16 (say to
32) are marginal. For SB-QPS, we also adopt T = 16 for
consistency, which leads to a reasonably low batching delay
and shows that SB-QPS clearly deserves its name (small-
batch) since this tiny batch size of 16 is much smaller than
that of any other batch switching algorithm.

For SW-QPS, T does not have to grow with N (to deliver
similar throughput and delay performances), as we will show
in Appendix A.1 in [15] that the delay performance of SW-
QPS (with T = 16) does not degrade when N grows larger.

6.2 Throughput Performance Results

Table 1: Maximum achievable throughput.
Traffic Uniform Quasi-diag Log-diag Diag
SB-QPS 86.88% 87.10% 87.31% 86.47%
SW-QPS 92.56% 91.71% 91.40% 87.74%
iSLIP 99.56% 80.43% 83.16% 82.96%
QPS-1 63.54% 66.60% 68.78% 75.16%

Table 1 presents the maximum achievable throughput of
SB-QPS, SW-QPS, iSLIP, and QPS-1, under the aforemen-
tioned four standard traffic patterns and an offered load
close to 1 (more precisely, 0.9999). We do not include the
throughout of MWM in Table 1, because it can provably
attain 100% throughput. We make three observations from
Table 1. First, SW-QPS significantly improves the through-
put performance of QPS-1, increasing it by an additive term
of 0.2902, 0.2511, 0.2262, and 0.1258 for the uniform, quasi-
diagonal, log-diagonal, and diagonal traffic patterns respec-
tively. Second, the throughput of SW-QPS is consistently
higher than that of SB-QPS under the four traffic patterns.
Third, under all traffic patterns except uniform, SW-QPS
significantly outperforms iSLIP, which is much more expen-
sive computationally as it runs log2 N iterations for each
matching computation.

6.3 Delay Performance Results
Figure 3 shows the mean delays of SB-QPS, SW-QPS, iS-

LIP, QPS-1, and MWM under the aforementioned four traf-
fic patterns. As we have shown in §6.2, SB-QPS, SW-QPS,
iSLIP and QPS-1 generally cannot attain 100% throughput,
so we only measure their delay performances for the offered
loads under which they are stable; in all figures in the sequel,
each “missing point” on a plot indicates that the correspond-
ing algorithm is not stable under the corresponding traffic
pattern and offered load. Figure 3 shows that, when the of-
fered load is not very high (say < 0.6), SB-QPS has a much
higher mean overall delay than others thanks to its batch-
ing delay that is still relatively quite high (despite a small
batch size of T = 16); in comparison, SW-QPS completely
eliminates this batching delay. Figure 3 also shows that
SW-QPS outperforms QPS-1 everywhere and outperforms

0.2 0.4 0.6 0.8 1

Normalized Load

10 -1

10 0

10 1

10 2

M
e
a
n
 D

e
la

y
Uniform

SB-QPS SW-QPS iSLIP QPS-1 MWM

0.2 0.4 0.6 0.8 1

Normalized Load

10 -1

10 0

10 1

10 2

Quasi-diagonal

0.2 0.4 0.6 0.8 1

Normalized Load

10 -1

10 0

10 1

10 2

Log-diagonal

0.2 0.4 0.6 0.8 1

Normalized Load

10 -1

10 0

10 1

10 2

Diagonal

Figure 3: Mean delays of SB-QPS, SW-QPS, iSLIP, QPS-1, and MWM under the 4 traffic patterns.

iSLIP under all traffic patterns except uniform. Since as
shown in Table 1 and Figure 3, the throughput and the de-
lay performances of SW-QPS are strictly better than those
of SB-QPS, we will show the performance results of only
SW-QPS in Appendix A in [15], in which we present more
evaluation results.

7. CONCLUSION
In this work, we first propose a batch switching algo-

rithm called SB-QPS that significantly reduces the batch
size without sacrificing the throughput performance much,
and achieves a time complexity of O(1) per matching com-
putation per port via parallelization. We then propose a
regular switching algorithm called SW-QPS that improves
on SB-QPS using a novel sliding-window switching frame-
work. SW-QPS inherits and enhances all benefits of SB-QPS
and reduces the batching delay to zero. We show, through
simulations, that the throughput and delay performances of
SW-QPS are much better than those of QPS-1, the state-
of-the-art regular switching algorithm based on the same
underlying bipartite matching algorithm.

Acknowledgments. This material is based upon work sup-
ported by the National Science Foundation under Grant No.
CNS-1909048 and CNS-2007006.

8. REFERENCES
[1] G. Aggarwal, R. Motwani, D. Shah, and A. Zhu.

Switch scheduling via randomized edge coloring. In
Proc. of the IEEE FOCS, pages 502–512, Oct 2003.

[2] M. Bayati, B. Prabhakar, D. Shah, and M. Sharma.
Iterative scheduling algorithms. In Proc. of the IEEE
INFOCOM, pages 445–453, May 2007.

[3] C. Cakir, R. Ho, J. Lexau, and K. Mai. Scalable
high-radix modular crossbar switches. In Proc. of the
HOTI, pages 37–44, Aug 2016.

[4] R. Duan and H. Su. A scaling algorithm for maximum
weight matching in bipartite graphs. In Proceedings of
the ACM-SIAM SODA, pages 1413–1424, 2012.

[5] M. Fayyazi, D. Kaeli, and W. Meleis. Parallel
maximum weight bipartite matching algorithms for
scheduling in input-queued switches. In Proc. of the
IEEE IPDPS, pages 4–11, Apr. 2004.

[6] J. Flegal, G. Jones, et al. Batch means and spectral
variance estimators in markov chain monte carlo. Ann.
Stat., 38(2):1034–1070, 2010.

[7] P. Giaccone, B. Prabhakar, and D. Shah. Randomized
scheduling algorithms for high-aggregate bandwidth
switches. IEEE J. Sel. Areas Commun.,
21(4):546–559, 2003.

[8] P. Glynn, W. Whitt, et al. The asymptotic validity of
sequential stopping rules for stochastic simulations.
Ann. Appl. Probab., 2(1):180–198, 1992.

[9] L. Gong, P. Tune, L. Liu, S. Yang, and J. Xu.
Queue-proportional sampling: A better approach to
crossbar scheduling for input-queued switches. Proc.
of the ACM SIGMETRICS, 1(1):3:1–3:33, June 2017.

[10] L. Gong, J. Xu, L. Liu, and S. T. Maguluri. QPS-r: A
cost-effective crossbar scheduling algorithm and its
stability and delay analysis. In Proc. of the EAI
VALUETOOLS, 2020.

[11] B. Hu, F. Fan, K. L. Yeung, and S. Jamin. Highest
rank first: A new class of single-iteration scheduling
algorithms for input-queued switches. IEEE Access,
6:11046–11062, 2018.

[12] B. Hu, K. L. Yeung, Q. Zhou, and C. He. On iterative
scheduling for input-queued switches with a speedup
of 2− 1/n. IEEE/ACM Trans. Netw.,
24(6):3565–3577, December 2016.

[13] N. McKeown. The iSLIP scheduling algorithm for
input-queued switches. IEEE/ACM Trans. Netw.,
7(2):188–201, Apr. 1999.

[14] N. McKeown, A. Mekkittikul, V. Anantharam, and
J. Walrand. Achieving 100% throughput in an
input-queued switch. IEEE Trans. Commun.,
47(8):1260–1267, Aug. 1999.

[15] J. Meng, L. Gong, and J. Xu. Sliding-window QPS
(SW-QPS): A perfect parallel iterative switching
algorithm for input-queued switches, e-prints
arXiv:2010.08620, Oct. 2020.

[16] M. J. Neely, E. Modiano, and Y. S. Cheng.
Logarithmic delay for n × n packet switches under the
crossbar constraint. IEEE/ACM Trans. Netw.,
15(3):657–668, June 2007.

[17] D. Shah and D. Wischik. Optimal scheduling
algorithms for input-queued switches. In Proc. of the
IEEE INFOCOM, pages 1–11, Apr. 2006.

[18] L. Wang, T. Ye, T. Lee, and W. Hu. A parallel
complex coloring algorithm for scheduling of
input-queued switches. IEEE Trans. Parallel Distrib.
Syst., 29(7):1456–1468, 2018.

