
Prefetching and Caching for Minimizing Service Costs:
Optimal and Approximation Strategies ∗

Guocong Quan Atilla Eryilmaz Jian Tan Ness Shroff
The Ohio State University

{quan.72, eryilmaz.2, tan.252, shroff.11}@osu.edu

ABSTRACT
In practice, prefetching data strategically has been used to
improve caching performance. The idea is that data items
can either be cached upon request (traditional approach) or
prefetched into the cache before the requests actually occur.
The caching and prefetching operations compete for the lim-
ited cache space, whose size is typically much smaller than
the number of data items. A key challenge is to design an
optimal prefetching and caching policy, assuming that the
future requests can be predicted to a certain extent. This is
a non-trivial challenge even under the idealized assumption
that future requests are precisely known.

To investigate the above challenge, we develop a cost-
based service model. The objective is to find the optimal
offline prefetching and caching policy that minimizes the
accumulated cost for a given request sequence. By casting
it as a min-cost flow problem, we are able to find the optimal
policy for a data trace of length N in expected time O(N3/2)
via flow-based algorithms. However, this requires the entire
trace for each request and cannot be applied in real time. To
address this issue, we analytically characterize the optimal
policy by obtaining an optimal cache eviction mechanism.
We derive conditions under which proactive prefetching is
a better choice than passive caching. Based on these in-
sights, we propose a lightweight approximation policy that
only exploits predictions in the near future. The approxi-
mation policy can be applied in real time and processes the
entire trace in expected time O(N). We prove that the com-
petitive ratio of the approximation policy is less than

√
2.

Extensive simulations verify its near-optimal performance,
for both heavy and light-tailed popularity distributions.

1. MOTIVATION
Proactively prefetching data items instead of passively

caching them has been utilized in practice to accelerate data
access, e.g., for content delivery networks. However, a fun-
damental trade-off between prefetching and caching has not
been fully understood. Because cache space is limited, load-
ing a prefetched data item into the cache typically triggers

∗This paper was supported by NSF grants CMMI-SMOR-
1562065, CNS-ICN-WEN-1719371, CNS-NeTS-1514260,
CNS-NeTS-1717045, CNS-NeTS-1717060, CNS-NeTS-
2007231, CNS-SpecEES-1824337, ONR Grant N00014-19-
1-2621, and DTRA grant HDTRA1-18-1-0050.

Copyright is held by author/owner(s).

cache eviction, which may potentially introduce more cache
misses for future requests. While there have been signifi-
cant efforts undertaken to approximate data statistics and
prefetch the most popular data, a fundamental question re-
mains to be answered: even with a perfect knowledge of fu-
ture requests, how can we optimally prefetch data items be-
forehand instead of caching them upon requests?

2. PROBLEM FORMULATION
We introduce a cost-based service model. Consider a se-

quence of requests that is assumed to be known. If the
requested data item is already in the cache, then the re-
quest can be served without paying a cost. However, if it
is not cached, we have two options to serve the correspond-
ing data request at different costs. The first option is to
fetch the data from the backend after the request arrives by
paying a fetching cost 1. We can decide whether to load
the fetched item into the cache or not. The second option
is to prefetch the data item before it is requested by pay-
ing a smaller prefetching cost c, 0 ≤ c ≤ 1. Note that the
prefetched data item has to be loaded into the cache. If
the cache space is full, other items must be evicted before
storing a new one.

The objective is to make the optimal prefetching and
caching decisions to minimize the accumulated cost for the
given request sequence. Notably, when the optimal pol-
icy fetches a missed request, it must not load the fetched
data into the cache and trigger evictions, because other-
wise prefetching will be a better choice. Solving the optimal
offline policy is equivalent to answering the following two
questions:
Q1: If a request is not cached, should we prefetch it before-
hand or fetch it upon the request?
Q2: If a data item is prefetched and the cache is full, which
item should be evicted?

3. KEY RESULTS
In this section, we summarize the key results of this work.

Detailed theorems can be found in the full paper [1].

3.1 Optimal Policy via Min-Cost Flow
We leverage the underlying structure of prefetching and

caching, and find the optimal policy by casting it as a min-
cost flow problem. Specifically, for a given request sequence,
we can construct a flow network where each request is rep-
resented by some nodes in a directed graph. The detailed
construction steps are described in [1]. The flow network
constructed for an example trace d1, d2, d1, d3 and a cache



Figure 1: Flow network constructed for request sequence d1, d2, d1, d3 .

of size 2 is presented in Figure 1. We have the following
key result to show the connection between the optimal off-
line policy and the min-cost flow on the constructed flow
network.

Key Result 1. For a given data trace, an optimal prefetch-
ing and caching policy can be developed from an integer min-
cost flow on the constructed flow network.

In the full paper [1], we present detailed steps on how to
construct the optimal prefetching and caching policy from
its corresponding min-cost flow solution. Based on Key Re-
sult 1, a flow-based optimal offline policy is proposed.
Flow-based optimal offline policy (πOPT ): Given a se-
quence of data requests, first construct a corresponding flow
network and solve the integer min-cost flow. Then, recon-
struct the optimal prefetching and caching policy from the
min-cost flow by following the steps introduced in [1].

The flow-based optimal offline policy πOPT is solvable in
expected time O(N3/2) for a request sequence of length N .
Although πOPT is offline optimal, the problem is not satis-
factorily solved for the following reasons: 1) πOPT does not
provide analytical answers to the two questions proposed in
Section 2, and therefore cannot fully reveal the underlying
insights of the optimal decision; 2) πOPT requires the knowl-
edge about all future requests to find the optimal policy, and
the optimal decision for a single request is unavailable unless
the process for the entire data trace is completed.

These unanswered questions motivate us to 1) analytically
characterize the properties of the optimal policy and explic-
itly answer the questions proposed in Section 2; 2) design a
lightweight approximation policy that achieves near-optimal
performance, requires only near-future information, and can
be executed in real time.

3.2 Characteristics of The Optimal Policy
We analytically characterize the optimal policy by first

answering question Q2. We show in Key Result 2 that an
optimal eviction policy is to evict the data item whose next
request is farthest in future.

Key Result 2. There exists an optimal policy that evicts
the farthest-in-future item for all prefetching operations.

Assuming that the farthest-in-future eviction is adopted,
we then answer question Q1 by deriving sufficient conditions
under which prefetching is the optimal choice.

Key Result 3. Assume that the upcoming request is not
cached. Prefetching the upcoming request is the optimal
choice, if any of the following two conditions is satisfied:
C1: There is a request for a popular item in the near future,
but that item is not cached currently;
C2: The prefetching cost c is sufficiently low.

Interestingly, even if the upcoming request is not popular,
prefetching that item is still optimal, as long as C1 or C2
is satisfied. The precise mathematical expressions for these
two conditions are provided in [1].

3.3 Lightweight Approximation Policy
Based on the characteristics of the optimal policy, we pro-

pose an approximation policy as follows.
Approximation Policy (πA): Prefetch the missed request
and evict the farthest-in-future item, if c ≤

√
2/2 or any of

the conditions C1 and C2 introduced in Key Result 3 holds.
Otherwise, fetch the missed item but do not cache it.

We provide performance bounds for πA by deriving its
competitive ratio rA, which is defined as the maximum ra-
tio of the cost achieved by πA to the cost achieved by an
optimal policy for some request sequence. We characterize
the competitive ratio rA in the following key result.

Key Result 4. Given the prefetching cost c, we have

rA =

{
1 for c ∈ [0, 1/2],

2c for c ∈ (1/2,
√

2/2].

For c ∈ (
√

2/2, 1] and a cache size b, rA can be bounded as
b/((b+ 1)c) ≤ rA ≤ 1/c.

We plot the upper bound for rA in Figure 2. It can be ob-
served that the proposed approximation policy achieves the
optimal performance when c ≤ 0.5. For c > 0.5, the compet-
itive ratio is at most

√
2 , which provides an effective bound

for the worst-case performance of πA. In [1], empirical ex-
periments verify that πA also achieves near-optimal average
performance for both synthetic and real data traces.

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

Figure 2: Upper bound for the competitive ratio rA.

Moreover, the approximation policy πA makes prefetching
and caching decisions based only on the request information
in the near future, regardless of the trace length N . As a
result, πA has an expected time complexity O(1) to make
decisions for a single request and O(N) to process the en-
tire trace. Unlike the flow-based policy πOPT that requires
all future requests to make decisions, πA is lightweight and
more practical since 1) it only requires near-future infor-
mation; 2) it does not have to process the entire trace to
make the decision for a single request, and therefore can be
executed in real time.

4. REFERENCES
[1] G. Quan, A. Eryilmaz, J. Tan, and N. Shroff.

Prefetching and caching for minimizing service costs:
Optimal and approximation strategies. Performance
Evaluation, 2020.
https://doi.org/10.1016/j.peva.2020.102149.


