
Demystifying the Placement Policies of the NVIDIA GPU
Thread Block Scheduler for Concurrent Kernels

Guin Gilman Samuel S. Ogden Tian Guo Robert J. Walls
Department of Computer Science

Worcester Polytechnic Institute, Worcester, MA, USA
{grgilman, ssogden, tian, rjwalls}@wpi.edu

ABSTRACT
In this work, we empirically derive the scheduler’s behav-
ior under concurrent workloads for NVIDIA’s Pascal, Volta,
and Turing microarchitectures. In contrast to past stud-
ies that suggest the scheduler uses a round-robin policy to
assign thread blocks to streaming multiprocessors (SMs),
we instead find that the scheduler chooses the next SM
based on the SM’s local resource availability. We show how
this scheduling policy can lead to significant, and seemingly
counter-intuitive, performance degradation; for example, a
decrease of one thread per block resulted in a 3.58X increase
in execution time for one kernel in our experiments. We
hope that our work will be useful for improving the accu-
racy of GPU simulators and aid in the development of novel
scheduling algorithms.

Categories and Subject Descriptors
C.1 [Computer Systems Organization]: Processor Ar-
chitectures; C.1.4 [Processor Architectures]: Parallel Ar-
chitectures; C.4 [Computer Systems Organization]: Per-
formance of Systems

Keywords
Concurrent kernels, GPGPUs, scheduling algorithms

1. INTRODUCTION
Concurrent kernel execution—i.e., running kernels from

separate streams at the same time on the same device—
has been proposed as a means to improve the utilization
of general purpose GPUs [19, 1, 16, 17, 5, 15, 7, 3, 4].
In order to take full advantage of kernel concurrency, the
scheduler must make intelligent decisions to efficiently di-
vide the GPU’s limited resources among the kernels. Sub-
optimal decisions by the scheduler can lead to inefficien-
cies that impact kernel performance. However, character-
izing the performance implications of such concurrency is
challenging due, in large part, to the black-box nature of
NVIDIA’s proprietary thread block scheduler.

In this work, we use empirical observations of real hard-
ware to infer the policies of the thread block scheduler on
the Pascal, Volta, and Turing GPU microarchitectures. We
find, for example, that the scheduler chooses where to as-
sign a thread block based on the local resource availability of

Copyright is held by author/owner(s).

the streaming multiprocessors (SMs)—we call this the most-
room policy. In contrast, most literature assumes that the
scheduler uses a simple round-robin policy [11, 2, 10]. We
define this policy as follows:

The most-room policy dictates that a kernel block will be
scheduled to the streaming multiprocessor that, at the time
of scheduling, can support the most blocks from the cur-
rent kernel, with only one block scheduled to that SM at a
time. This calculation takes into account each SM’s current
resource availability, but it does not account for potential
resource contention with blocks already on the SM. This
policy breaks ties between SMs using a pre-defined device-
specific ordering.

Our observations lead to the following conclusion: the per-
formance of a kernel in a concurrent workload is challenging
to predict because the performance depends on factors that
are external to the kernel itself. Such factors include (i) the
scheduling policies of the thread block scheduler; (ii) the
potential for resource contention across myriad hardware re-
sources; and (iii) the impact of possibly unpredictable effects
such as kernel launch timing.

In short, this paper makes the following main contribu-
tions:

• We characterize the behavior of the hardware thread
block scheduler on NVIDIA GPUs under concurrent
kernel workloads in Section 4. We introduce the most-
room policy, a previously unknown scheduling policy
used to determine the placement of thread blocks on
SMs.

• We examine the performance implications of the most-
room policy under concurrent workloads in Section 5.
We demonstrate that the policy can result in counter-
intuitive performance drops with only small changes
made to the structure of the concurrent kernels. For
example, a decrease of one thread per block resulted
in a 3.58X increase in execution time for one kernel in
our experiments.

• We highlight the scheduler’s impact on concurrent work-
loads with purpose-built kernels that emulate com-
mon classes of general purpose GPU kernels: L1-cache-
dependent, compute-intensive, memory-intensive, and
PCIe-bandwidth-dependent. We found performance
differences due to resource contention between kernels
and a lack of kernel-level fairness.



2. CUDA PROGRAMMING MODEL
CUDA is a programming model for GPU computing on

NVIDIA devices. We provide a brief overview of the ter-
minology and workflow of the CUDA programming model
and NVIDIA GPUs. We focus our discussion on GPUs from
the recent Pascal, Volta, and Turing microarchitectures; the
first devices based on these architectures were released in
2016, 2017, and 2018 respectively. We focus only on the
details that are necessary to understand the behavior of the
thread block scheduler under concurrent workloads.

Kernels and Thread Blocks. The code executed by the
GPU is known as a kernel. Kernels consist of independent
groups of threads, known as thread blocks, which execute in
parallel. The code of each block is identical, but each block
operates on a different subset of data. These thread blocks
make up a logical array called a grid. Both blocks and grids
can be defined in up to three dimensions.

Streams. A stream is a sequence of commands which
must be executed in issue-order on the GPU; more than one
stream can exist at a time, and operations across streams are
asynchronous and independent. In a system with a discrete
GPU, where the GPU is a separate device from the CPU and
connected by a link such as PCIe, the kernel and any data it
operates on must be transferred to the GPU using streams.
Two kinds of commands can be issued to a stream by a
CUDA program: a data transfer command, which causes
data to be migrated between the GPU and CPU over the
PCIe link; and a kernel dispatch command, which causes a
kernel to be transferred to and executed on the GPU.
Streaming Multiprocessors. The GPU executes a ker-

nel by scheduling the thread blocks to hardware units of
computation known as streaming multiprocessors (SMs). An
SM has a fixed set of resources and resource limits, such as
threads, shared memory, and registers. During execution,
blocks are scheduled under the constraint that the total re-
source requirements of the resident blocks on the SM cannot
exceed any one of the SM’s resources.
Concurrent Kernel Execution. Broadly, concurrent

kernel execution is the act of running kernels from separate
streams at the same time on the same GPU. Note that kernel
concurrency is only possible for kernels from the same CUDA
context, which is analogous to a CPU process, and contains
all resources and actions performed within the CUDA driver
API.
Thread Block Scheduler. The thread block scheduler

is responsible for assigning thread blocks to SMs to be ex-
ecuted. A new block is assigned as soon as the resources
become available on some SM [10, 2]. Thus, the thread
block scheduler must be aware of the remaining resources of
each SM. Once a thread block has been assigned to an SM,
groups of 32 threads called warps are scheduled to the SM’s
execution cores by the SM’s own warp scheduler.

3. METHODOLOGY
We selected three GPUs which are representative of NVID-

IA’s three recent microarchitectures: Pascal, Volta, and Tur-
ing. These three GPUs represent a range of use cases; the
Pascal GPU is found in laptops, the Volta GPU is used in
cloud computing servers, and the Turing GPU is a high-end
desktop GPU. All three are discrete GPUs. We ran a simi-
lar set of experiments on all three devices, with adjustments
to tailor the workload to the specific hardware capabilities

SM0 SM2 SM4 SM6 SM67SM0 SM2 SM4 SM6 SM67

Concurrent Colocated CaseConcurrent Isolated Case

Kernel A (512 threads)Kernel B (32/33 threads)

Figure 1: Concurrent workload experimental setup for
the Turing architecture. This example uses threads as
the limiting resource.

and resource limits of the GPU under observation. See Ap-
pendix B for a summary of each device’s architectural de-
tails.

We identified individual streaming multiprocessors (SMs)
using the smid register, which returns a unique value for
each SM. We differentiated thread blocks by their blockIdx
values, a predefined tuple of identifiers for each thread block.
We use SM0 to denote the SM with id 0, and B0 to denote
the block of a kernel B with a blockIdx.x value of 0. Our
experiments in this work fall into two categories: deriving
the scheduler’s policy and characterizing the performance
impact of the derived policy.

3.1 Deriving the Most-Room Policy
The results presented in Section 4 are based on the fol-

lowing empirical methodology.
To derive the most-room scheduling policy of the thread

block scheduler, we used a basic workload structure con-
sisting of two kernels, X and Y, for our experiments, where
each kernel was launched on a separate CUDA stream. In
all cases, Kernel X was launched first and followed later by
Kernel Y.

The kernels consisted of code that used the globaltimer

register to spin each block for a number of seconds propor-
tional to the id of the assigned SM. In particular, this differ-
ence in block execution time guaranteed that the blocks for
Kernel X would finish executing in the order in which they
were assigned. Further, the timing guaranteed that Kernel
Y’s blocks were scheduled after the first block of Kernel X
finished executing, but before any of Kernel X’s other blocks
had finished. In other words, at the moment Kernel Y was
launched, SM0 was empty while SMs 1–n each contained
exactly one of Kernel X’s blocks. Kernel X consisted of a
set of n blocks (where n was the number of SMs on the
GPU), while Kernel Y had three thread blocks, so all of the
SMs contained one block of Kernel X except the empty one.
The number of threads per block and the execution times
of these kernels were configured such that the placement of
the blocks from Kernel Y allowed us to derive the scheduler’s
policy.

3.2 Measuring Workload Performance
The results presented in Section 5 are based on the fol-

lowing empirical methodology.
To investigate the performance implications of the most-

room policy, we designed a set of concurrent workloads with
kernels whose block dimensions made their block placement
sensitive to the most-room policy. We wrote these workloads



SM0

SM1
X1

X0
Time

X Y

Y0
Y1

Y2

Figure 2: Illustration of the experiment demonstrating
the scheduler’s most-room policy on the Pascal GPU.
Here, SMs 2-4 were omitted for space, as they each con-
tained only blocks of Kernel X.

instead of running kernels from an existing benchmark suite
(e.g., Rodinia [6]) in order to have more control over the
scheduling outcome and the particular resource under con-
tention. We used the execution time of the individual kernels
as the performance metric, measured with NVIDIA’s kernel
profiling tool nvprof [12]. We used four different classes of
purpose-built kernels: L1-cache-dependent, compute-inten-
sive, memory-intensive, and PCIe-transfer-dependent.

All of the performance experiments followed the same ba-
sic structure, an example of which is illustrated in Figure 1.
First, each experiment consisted of two kernels from sepa-
rate applications, termed Kernel A and Kernel B. Note that
these kernels were distinct from the Kernels X and Y de-
scribed in Section 3.1. Kernel A was launched first, with
n− 1 blocks, where n was the number of SMs on the GPU.
This guaranteed that all n − 1 blocks were scheduled to a
separate SM, leaving one empty SM remaining.

We varied the number and specific resource requirements
of Kernel B’s blocks, such that the scheduler assigned all of
B’s blocks to the empty SM in some experimental runs, and
in other runs colocated B’s blocks with Kernel A’s blocks.
We refer to these scenarios as the concurrent-isolated case
and the concurrent-colocated case, respectively, and illus-
trate both in Figure 1. As a baseline, we also ran each
kernel serially (i.e., without concurrency); we refer to this
as the serial case. Note that in the serial case experiments,
the blocks of Kernel B were scheduled to separate SMs.

4. THE MOST-ROOM POLICY
Understanding the thread block scheduler requires an-

swering the following questions. First, when does the sched-
uler choose to schedule another block? Second, which block
does the scheduler choose? And third, where will that block
be placed? It has been shown in previous work that the
scheduler chooses when and which block using a leftover
policy (see Section 6). However, in contrast to previous
studies, we find that the scheduler chooses where to place a
block based on the SMs’ local resource availability; we call
this behavior the most-room policy. Due to the black-box
nature of the NVIDIA hardware, we draw our conclusions
from empirical observations of the scheduler.

4.1 A Demonstrative Experiment
We illustrate the most-room policy with the following ex-

periment run on the Pascal GPU and depicted in Figure 2.
For this experiment, we used a workload consisting of two
kernels, A and B, which were launched in that order. Kernel
X was composed of five blocks, as the Pascal GPU had five
SMs, with 256 threads in each block. Block X0 (assigned to

SM0 by the scheduler) always finished executing first, while
block X4 (assigned to SM4) finished executing last. Kernel
Y was composed of three blocks, each of 160 threads.

If the scheduler followed a pure round-robin policy, as is
widely believed to be the case [11, 2, 10], then we would
expect that blocks Y0, Y1, and Y2 would be placed on SM0,
SM1, and SM2 respectively. Instead, the scheduler placed
two blocks on SM0 and one block on SM1—a decision which,
as we argue below, was based on each SMs’ local resource
availability.

Let us first consider why Y0 was scheduled to SM0. At
the time of the decision, SM0 was empty and thus could
support the maximum of 2048 threads, meaning that it had
room for up to 12 blocks of Kernel Y. The other four SMs,
having one block of Kernel X already resident, had only 1792
threads available and thus only had room for 11 blocks of
Kernel Y.

The second block of Kernel Y was also scheduled to SM0,
resulting in Y0 and Y1 executing on the same SM. With
Y0 already executing, SM0 had 1888 threads available and
could then fit only 11 blocks of Kernel Y. As all of the SMs
could fit 11 blocks of Kernel Y, the first SM was chosen
(SM0) per the tie-breaking ordering.

Finally, the third block of Kernel Y was scheduled to SM1.
At the time of the decision, SM0 was executing two blocks
of Kernel Y, and thus had 1728 threads available. As SM0
could fit only 10 blocks of Kernel Y, the scheduler chose the
first SM out of the remaining four that could fit 11 blocks
each (SM1).

This behavior, where the scheduler places the next block
onto the SM which can host the largest number of blocks of
the current kernel, is what we term the most-room policy.
We discuss the finer details of this policy below.

4.2 SM Resource Limits
Determining which SM has the most room is dependent

on a number of factors, and we find that it is specific to the
moment in time when the block is being scheduled and is
therefore re-evaluated for each block. As discussed previ-
ously, blocks require a number of computational resources
which the SM provides, including shared memory, threads,
and registers. If a block requires more of any one of these
resources than an SM has available, it cannot be assigned to
that SM. Thus, the first resource to run out when assigning
blocks of that kernel to SMs becomes the limiting resource.

For the previous experiment, threads were the limiting
factor, but we have also identified shared memory, the hard-
ware limits on blocks per SM, and warps per SM as limiting
factors. However, we cannot be certain that we have iden-
tified all limiting factors given the black-box nature of the
scheduler.

We ran a modified version of the experiment discussed
above, where Kernel X consisted of five blocks with 1024
threads per block and Kernel Y consisted of three blocks
with 32 threads per block. This meant that the limiting
factor was the number of blocks allowed per SM, since 1024
free threads is enough room for up to 32 blocks of Kernel
Y. On the Pascal GPU, this limit of blocks per SM was 32.
In this experiment, the first two blocks of Kernel Y were
assigned to SM0, and the last was assigned to SM1. This
result is consistent with the most-room policy: at the time
block Y0 was scheduled, SMs 1–4 had room for 31 blocks
of Kernel Y (already having one block of Kernel X each),



so SM0 was chosen because it was empty and had room for
up to 32 blocks of Kernel Y. Then, as all the SMs were tied
with space for 31 blocks, Y1 and Y2 were placed on the first
two SMs respectively.

When we increased the number of threads per block in
Kernel Y to 33, but left Kernel X the same, all three blocks
of Kernel Y were placed on SM0. The limiting factor had
become the number of warps per SM instead of the maxi-
mum number of blocks per SM. On the Pascal GPU, each
SM can have up to 64 warps scheduled, and the blocks of
Kernel Y at the size of 33 threads now required two warps
instead of one. The SMs running one block of Kernel X al-
ready had 32 active warps, and could thus fit only 16 blocks
of Kernel Y.

4.3 Tie-Breaking
The scheduler appears to use a per-device fixed ordering

to break the ties between SMs, always picking the first SM
that appears in that ordering. In our experiments with the
Pascal GPU, for instance, we observed that when SM0 was
empty, the scheduler always chose to place the next block
on SM0, no matter which other SMs were also empty.

However, this tie-breaking ordering is not as simple as
choosing the SM in ascending order of id number, as the
previous observation might suggest. For instance, on the
Pascal GPU, the ordering was a simple ascending order: 0,
1, 2, 3, 4. On the Turing GPU, however, the order can be
best summarized as an evens-then-odds ordering: 0, 2, 4, 6,
..., 66, 1, 3, 5, 7, ..., 67. While the orderings were differ-
ent among the different GPUs, none of the GPUs’ thread
block schedulers ever deviated from their respective order-
ings when breaking ties between blocks in our experiments.

We suspect the ordering depends in part on the grouping
of SMs into Texture Processing Clusters (TPCs) and TPCs
into Graphics Processing Clusters (GPCs). On the Turing
GPU, for example, there was a total of six GPCs, with two
SMs per TPC and 5-6 TPCs per GPC. We used the method-
ology of Pai [14] to determine which SMs belonged to which
GPC, and found that the even-then-odds ordering caused
blocks to be spread across GPCs and TPCs. This behavior
may be intended to be a form of load balancing.

4.4 Further Details
The most-room policy is often indistinguishable from round-

robin in the case of a single kernel. This is because blocks of
the same kernel are of equal dimensions and typically there is
little divergence in the executed instructions of the blocks,
so the resources available on each SM will remain mostly
identical when a single kernel is executing. We posit this as
a reason for the frequent use of round-robin as a description
of the scheduler’s placement policy.

Additionally, we found no evidence that the shape of the
block or grid influences the scheduler’s decision. For exam-
ple, a 32x2 thread block was indistinguishable from a 64x1
thread block from the perspective of the scheduler.

Finally, the most-room policy has performance implica-
tions for concurrent kernels, including performance drops
that are difficult to understand without knowledge of the
scheduler’s most-room policy. The results from concurrent
kernel execution can seem counter-intuitive at first glance
without knowledge of the most-room policy. We explore
these issues in the next section.

5. PERFORMANCE IMPLICATIONS OF THE
MOST-ROOM POLICY

In this section, we highlight the impact of the scheduler
and its most-room policy on concurrent kernels. We em-
pirically show how minute variations in the structure of the
kernel’s blocks cause the scheduler to make different place-
ment decisions that result in large variations of kernel per-
formance. While the observations given below apply to all
three GPUs used in this study, this section only presents
the empirical results for the Turing GPU; the results for the
Pascal and Volta GPUs can be found in Appendix B. See
Appendix A for the kernel implementation details.

5.1 A Demonstrative Experiment
Consider the basic experimental structure that we used

for the Turing GPU. The two kernels A and B were each
launched on two different CUDA streams. Kernel A had
67 blocks of 512 threads and it was launched first, guaran-
teeing that all 67 blocks would be scheduled to a separate
SM (SMs 0-66), with SM67 left empty. Kernel B had two
versions: one with 8 blocks of 32 threads, and one with 8
blocks of 33 threads. The version with 33 threads was the
concurrent-isolated case. The limiting agent for Kernel B
was the number of threads, so all of the 8 blocks of Ker-
nel B were scheduled to the empty SM67. The version with
32 threads was the concurrent-colocated case; the limiting
agent for Kernel B was the hardware limit on the number of
blocks per SM, so the first of Kernel B’s blocks was placed on
the empty SM67. The rest were placed according to the tie-
breaking ordering (see Section 4.3), with one per SM. This
resulted in one block of Kernel A and one block of Kernel B
on SMs 0, 2, 4, 6, 8, 10, and 12.

As described above, the only difference between the con-
current-isolated and concurrent-colocated cases is that the
Kernel B uses 33 threads per block in the concurrent-isolated
case and 32 threads per block in the concurrent-colocated
case. This minor difference in threads per block had a neg-
ligible impact on runtime (in the serial case), but triggered
different scheduling decisions.

5.2 L1-Cache-Dependent Kernels
As all blocks on an SM share the same L1 cache, the

performance of L1-cache-dependent kernels depends primar-
ily on the amount of cache contention [19] (i.e., L1-cache-
dependent kernels perform better when the cache is available
for their exclusive use).

As summarized in Table 1, the execution time of both
kernels in the concurrent-isolated case mirrored that of the
baseline (i.e., the serial case). In other words, when the
scheduler placed all of Kernel B’s blocks on a separate SM
from Kernel A’s blocks, both kernels executed with the same
performance as if they each had a dedicated GPU. However,
when blocks from both kernels were scheduled to the same
SM (i.e., the concurrent-colocated case), there was a 1.24X
increase in execution time for Kernel A and a 1.33X increase
for B.

We attribute this loss of performance to increased cache
contention caused by the scheduler’s decision to co-locate
blocks from Kernels A and B. In particular, the most-room
policy does not account for interactions between separate
kernels. In the concurrent-isolated case, there was no in-
crease in execution time, as the kernels were executing on
separate SMs and each SM had a separate L1 cache—there-



Table 1: Kernel execution times on the Turing GPU, with their increase from the serial case noted in parentheses.
Times were averaged over 30 runs; coefficient of variation was less than 3% for all cases.

Serial (ms) Concurrent-Isolated (ms) Concurrent-Colocated (ms)

Kernel A Kernel B Total Kernel A Kernel B Kernel A Kernel B

L1 Cache-Dependent 85 79 164 85 79 105 (1.24X) 105 (1.33X)

Compute-Intensive 523 365 888 527 529 (1.45X) 530 676 (1.85X)

Memory-Intensive 949 10 959 951 224 (22.4X) 955 961 (96.1X)

Transfer-Bandwidth-Dep 369 130 499 385 (1.04X) 355 (2.73X) 388 (1.05X) 466 (3.58X)

fore there was no increase in cache contention.
Further, we observed performance degradation even when

a single block of Kernel B was placed on an SM with Kernel
A. In particular, we also ran the 33-thread version of Kernel
B with 9 blocks instead of 8, which led to one block of Kernel
B being assigned to an SM other than 67—one where Ker-
nel A had a block running, thus causing interference. This
experiment resulted in an execution time of 105ms for both
kernels, the same as the concurrent-colocated case.

Finally, while concurrent kernel execution was faster than
serial execution in both cases, the end-to-end execution time
of the workload was also impacted by the scheduling deci-
sions; for the Turing GPU we observed 164ms for the se-
rial case, 85ms (0.52X) for the concurrent-isolated case, and
105ms (0.64X) for the concurrent-colocated case. Note that
the total execution time of the concurrent cases is the max
of the execution times of A and B.

5.3 Compute-Intensive Kernels
Compute-intensive kernels perform a high number of com-

putational operations, and their performance is bounded by
the number of these operations that can be performed on
an SM per unit of time. In the concurrent-isolated case,
Kernel A saw no change in performance, while Kernel B ex-
perienced a 1.45X increase in execution time. Again, we at-
tribute this decrease in performance to increased contention
for resources (i.e., the functional units which perform these
operations). However, in this case, the contention is be-
tween blocks of Kernel B only rather than contention be-
tween blocks of Kernels A and B. Recall that in the baseline
serial execution, all of the blocks of Kernel B were scheduled
to separate SMs, whereas in the concurrent-isolated case, all
eight blocks of Kernel B were scheduled to the same SM. In
other words, there was more contention for computational
resources than when Kernel B was run by itself and each of
the eight blocks were executing on a different SM.

In the concurrent-colocated scenario, Kernel A remained
unaffected, but Kernel B experienced a 1.85X increase in
execution time from the serial case. However, when we
swapped the launch order of A and B, we observed only
a small degradation for both kernels. Both concurrent cases
exhibited only a slight improvement in total execution time
compared to the serial case.

These results demonstrate that when two compute-inten-
sive kernels are run concurrently, the scheduler’s decisions
can have a disproportionate impact on the performance of
the kernels. This observation has important implications
for kernel-level fairness, as the second kernel gets starved
for resources in the concurrent-colocated scenario. Thus,
even if Kernel B gets scheduled to an SM, the scheduler’s

implicit preference for Kernel A (due only to the fact that
it was launched first) seemingly resulted in the majority of
the functional units being assigned exclusively to Kernel A,
preventing Kernel B from using the resources it needed to
finish executing.

5.4 Memory-Intensive Kernels
Memory-intensive kernels are dependent on global mem-

ory throughput for their performance due to the high vol-
ume of global memory accesses that they incur. In the serial
baseline, Kernels A and B exhibit very different execution
times due to the difference in the number of threads per
block. When run concurrently (i.e., isolated and colocated
executions), the execution time of Kernel A was mostly un-
affected; however, the execution time of Kernel B was im-
pacted significantly. In the concurrent-isolated case, the
execution time of Kernel B increased 22.4X, and in the
concurrent-colocated case, the execution time increased by
96.1X. Both concurrent cases had total execution times com-
parable to the serial case (i.e., concurrency offered little im-
provement).

The increase in execution time for Kernel B during the
concurrent-isolated case can be explained by the increase
in contention for global memory throughput when all eight
blocks reside on the same SM. The performance of Kernel
B worsened drastically, whereas Kernel A saw almost no
change in execution time. This is most likely due to the
difference in size of the two kernels. Kernel A, having a
much higher number of threads, made a much larger num-
ber of global memory accesses. Global memory is SRAM,
physically present on the GPU and accessible by all SMs.
Therefore, Kernel A used a larger portion of the global mem-
ory transfer bandwidth. Thus, when sharing the bandwidth
with Kernel B, it was less affected by the contention.

5.5 Transfer-Bandwidth-Dependent Kernels
Transfer-bandwidth-dependent kernels depend on the speed

at which page faults can be handled by the GPU. For a sys-
tem with a discrete GPU, the PCIe link connects the CPU
and GPU. All input data and code must be transferred over
this link. The classic model for handling this transfer is to
send all of the input data over the link prior to the start
of kernel execution. However, as the PCIe link becomes
a performance bottleneck in this load-then-execute model,
NVIDIA has been progressively adding features that allow
for the overlap of data transfer and kernel execution. One
such feature is Unified Virtual Memory (UVM).

For NVIDIA GPUs, UVM allows the programmer to treat
memory as if it is shared between the CPU and GPU, even
though in actuality, data must still be transferred between
them over the PCIe link. With UVM, data can be trans-



ferred completely asynchronously as the kernels are being
executed, with data being fetched on-demand as it is ac-
cessed by the kernels using paging. Thus, PCIe transfer
bandwidth becomes another resource that is shared between
concurrently executing kernels.

When run concurrently, we observed a minor performance
degradation for Kernel A but a substantial degradation for
Kernel B. In the concurrent-isolated case, the runtime for
Kernel A increased by 1.04X and the runtime for Kernel B
increased by 2.73X. In the concurrent-colocated case, Ker-
nel A saw a 1.05X increase, while Kernel B experienced a
larger 3.58X increase from the baseline. One possible ex-
planation for the larger increase in the concurrent-colocated
case is that there was more contention for transfer-related,
SM-specific resources, like the translation lookaside buffer
(TLB). Despite the increase in the individual execution times,
the total execution time of the workload was slightly less
than the serial case.

5.6 Summary
The impact of the most-room policy on performance de-

pends on the type of kernel being executed. For example,
the scheduler’s decisions disproportionately affect individ-
ual kernel performance for compute- and memory-intensive
kernels, resulting in poor kernel-level fairness. Transfer-
bandwidth-dependent and L1-cache-dependent kernels are
impacted by contention for resources such as PCIe band-
width, the TLB, and the L1 cache, which is worsened when
the two concurrent kernels are colocated.

Finally, when the blocks of Kernels A and B were executed
on separate SMs, concurrency offered an improvement in
total execution time versus serial execution. However, when
blocks from different kernels were placed on the same SM,
that improvement lessened and, in some cases, dissipated
entirely.

6. RELATED WORK
It has been widely observed that the scheduler uses a left-

over policy when scheduling blocks from kernels launched
on different streams [11, 19, 2, 10]. As intimated in Sec-
tion 4, the leftover policy is used in conjunction with the
most-room policy; the former defines when and which block
to be scheduled next while the latter defines where to place
that block.

Like the most-room policy, the leftover policy also has im-
portant implications for concurrency. In particular, under
this policy only blocks from the kernel at the front of the ex-
ecution queue can be scheduled. In other words, the blocks
of other kernels in the queue will not be scheduled until all
of the blocks from the current kernel have been scheduled—
even if there is room on an SM for colocation. The scheduler
cannot preempt kernels [2], meaning the queue cannot be
skipped, and blocks cannot be paused or stopped partway
through their execution. Our observations suggest that the
GPUs used in this study also employ the leftover policy.

As a result of the leftover policy, kernel concurrency is
most common when the workload consists of multiple small
kernels—small in the sense that all blocks from the kernel
can fit on the GPU at one time. Conversely, there is lit-
tle opportunity for concurrency when a large kernel (more
blocks than can be scheduled at one time on the GPU) is
launched.

Myriad solutions have been proposed to address the lack

of concurrency arising from the NVIDIA hardware sched-
uler’s block placement policies. These works fall broadly into
two categories: time-based multiplexing and space-based
multiplexing. The time-multiplexing methods focus on im-
proving turnaround time (as opposed to utilization), either
by enabling preemption on GPUs [1, 17, 16, 18] or reorder-
ing the kernels to avoid serialization due to data transfer
dependency bottlenecks [5, 15]. The space-multiplexing so-
lutions focus on providing more efficient sharing of GPU
resources between kernels, thus improving resource utiliza-
tion of the GPU over time [15, 1, 19, 7, 20]. Many of these
efforts attempt, in part, to address resource contention like
that described in Section 5. Our work complements these
efforts as, we identify a previously-undisclosed scheduling
policy that is useful for understanding when, how, and why
such contention arises.

7. CONCLUSION
In summary, we have presented evidence that the thread

block scheduler on NVIDIA devices uses a most-room policy
to assign thread blocks to SMs, as opposed to the round-
robin scheduling assumed by prior work. We have also
demonstrated how scheduling decisions made under this pol-
icy can impact the performance of concurrent workloads.

Our results evince three factors that influence the perfor-
mance of a kernel in a concurrent workload: (i) the schedul-
ing policies of the thread block scheduler; (ii) the potential
for resource contention across myriad hardware resources;
and (iii) the impact of possibly unpredictable effects such
as kernel launch timing. The implication is that predicting
the performance of concurrent kernel execution is challeng-
ing because the kernel’s performance depends on factors that
are external to the kernel itself.

However, more work is needed to understand the full im-
plications of the scheduler’s behavior and the most-room
policy. For example, while our work demonstrates degrada-
tion for pathological cases, it is important to characterize
the impact on more realistic workloads. In future work, we
hope to expand our results to include performance evalua-
tions of applications from GPU benchmark suites, such as
Rodinia [6], and platforms, such as TensorRT [13].

It is important to reiterate that we are limited to empirical
observations of the scheduler, and thus, the policies we de-
scribe are not guaranteed to be precisely what the hardware
implements—though, the most-room policy description is
consistent with all of our empirical observations.

Finally, we hope that our work will be useful in improving
the accuracy of existing GPU simulators and, consequently,
assist in the development of concurrency-aware scheduling
policies.

8. ACKNOWLEDGEMENTS
We would like to thank all anonymous reviewers for their

insightful comments, as well as Shijian Li and Yiqin Zhao for
their help in GPU server setup. This work is supported in
part by National Science Foundation grants CNS-1755659
and CNS-1815619, and Google Cloud Platform Research
credits.

9. REFERENCES
[1] J. T. Adriaens, K. Compton, N. S. Kim, and M. J.

Schulte. The case for gpgpu spatial multitasking. In



IEEE International Symposium on High-Performance
Comp Architecture, 2012.

[2] T. Amert, N. Otterness, M. Yang, J. H. Anderson,
and F. D. Smith. Gpu scheduling on the nvidia tx2:
Hidden details revealed. In 2017 IEEE Real-Time
Systems Symposium (RTSS), 2017.

[3] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose,
J. Gandhi, C. J. Rossbach, and O. Mutlu. Mosaic: A
gpu memory manager with application-transparent
support for multiple page sizes. In 2017 50th Annual
IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2017.

[4] M. Awatramani, J. Zambreno, and D. Rover.
Increasing gpu throughput using kernel interleaved
thread block scheduling. In 2013 IEEE 31st
International Conference on Computer Design
(ICCD), 2013.

[5] M. E. Belviranli, F. Khorasani, L. N. Bhuyan, and
R. Gupta. Cumas: Data transfer aware
multi-application scheduling for shared gpus. In
Proceedings of the 2016 International Conference on
Supercomputing, ICS ’16, 2016.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S. Lee, and K. Skadron. Rodinia: A benchmark suite
for heterogeneous computing. In 2009 IEEE
International Symposium on Workload
Characterization (IISWC), 2009.

[7] P. Jain, X. Mo, A. Jain, H. Subbaraj, R. S. Durrani,
A. Tumanov, J. Gonzalez, and I. Stoica. Dynamic
space-time scheduling for gpu inference, 2018.

[8] Z. Jia, M. Maggioni, J. Smith, and D. P. Scarpazza.
Dissecting the nvidia turing t4 gpu via
microbenchmarking, 2019.

[9] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza.
Dissecting the nvidia volta gpu architecture via
microbenchmarking, 2018.

[10] H. Li, D. Yu, A. Kumar, and Y.-C. Tu. Performance
modeling in cuda streams - a means for
high-throughput data processing. IEEE International
Conference on Big Data, 2014.

[11] H. Naghibijouybari, K. N. Khasawneh, and
N. Abu-Ghazaleh. Constructing and characterizing
covert channels on gpgpus. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-50 ’17, page 354–366, 2017.

[12] NVIDIA. Profiler user’s guide, 2007.

[13] NVIDIA. Nvidia tensorrt, 2020.

[14] S. Pai. How the fermi thread block scheduler works
(illustrated), 2014.

[15] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan.
Improving gpgpu concurrency with elastic kernels. In
Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’13, 2013.

[16] J. J. K. Park, Y. Park, and S. Mahlke. Chimera:
Collaborative preemption for multitasking on a shared
gpu. SIGPLAN Not., 50(4), 2015.

[17] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez,
N. Navarro, and M. Valero. Enabling preemptive
multiprogramming on gpus. SIGARCH Comput.
Archit. News, 42(3), 2014.

[18] B. Wu, X. Liu, X. Zhou, and C. Jiang. Flep: Enabling

flexible and efficient preemption on gpus. ACM
SIGARCH Computer Architecture News, 45:483–496,
04 2017.

[19] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and
M. Annavaram. Warped-slicer: Efficient intra-sm
slicing through dynamic resource partitioning for gpu
multiprogramming. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture
(ISCA), 2016.

[20] W. Zhang, W. Cui, K. Fu, Q. Chen, D. Mawhirter,
B. Wu, C. Li, and M. Guo. Laius: Towards latency
awareness and improved utilization of spatial
multitasking accelerators in datacenters. pages 58–68,
06 2019.

APPENDIX
A. KERNEL IMPLEMENTATIONS

To emulate an L1-cache-dependent kernel, we used an ap-
proach based on the one taken by Naghibijouybari et al [11].
We implemented a kernel which uses each thread in a block
to repeatedly access texture memory. We used knowledge of
the specific structure of the L1 caches on each GPU, such as
their size and set-associativity [9, 8], to make these accesses
highly cacheable but vulnerable to replacement by repeat-
edly accessing data from different sets of the cache. To con-
firm these kernels’ dependence on the cache, we measured
the L1 cache hit rate in the serial case, and found that they
experience a 90% hit rate on average, ranging from 75%-
95%.

In order to emulate a compute-intensive kernel, we de-
signed the kernels to occupy the functional units by per-
forming repeated floating point operations—these functional
units are the hardware components that the SMs use to per-
form computations. Further, we avoided memory accesses
in our kernel design to prevent global memory access con-
tention from impacting performance.

To emulate a memory-intensive kernel, we designed a ker-
nel which repeatedly accesses indices of a large array stored
in global memory. When threads write to memory addresses
nearby each other in global memory, their individual ac-
cesses can be coalesced to save memory transfer bandwidth.
Using writes as opposed to reads prevents the data from
being cached in the L1/texture cache. To avoid memory
coalescing impacting these results, the threads’ memory ac-
cesses were spaced apart. As these addresses were far away
from each other for all threads within a warp, they cannot
be coalesced efficiently, causing more data to be transferred
per global memory access.

To emulate dependence on PCIe transfer bandwidth, we
designed a kernel which triggers a large number of page far-
faults, meaning that the page is not in the GPU’s global
memory but instead must be transferred over the PCIe link.
To do this, the kernel accesses memory such that the threads
within a block target addresses nearby each other, but threads
from different blocks target addresses that are distant. Fur-
ther, accesses can be coalesced within blocks, which limits
the effect of global memory transfer bandwidth contention
on the performance of these kernels.

B. OTHER GPU RESULTS
The relevant architectural details for each of the three



Table 2: Architectural details of the GPUs used in our experiments.

Arch. Compute Capability SMs Threads per SM Threads per Block Blocks per SM Warps per SM

GeForce GTX 1080 Pascal 6.0 5 2048 1024 32 64

Tesla V100 Volta 7.0 80 2048 1024 32 64

GeForce RTX 2080 Ti Turing 7.5 68 1024 1024 16 32

Table 3: Average execution times for kernels in differing scenarios on the Pascal GPU with 5 SMs.

Serial (ms) Concurrent-Isolated (ms) Concurrent-Colocated (ms)

Kernel A Kernel B Total Kernel A Kernel B Kernel A Kernel B

L1 Cache-Dependent 63 45 108 63 45 94 (1.49X) 94 (2.09X)

Compute-Intensive 780 415 1195 780 415 895 (1.15X) 915 (2.20X)

Memory-Intensive 1233 49 1282 1233 274 (5.59X) 1270 1270 (25.9X)

Transfer-Bandwidth-Dep 1588 239 1827 1680 (1.06X) 523 (2.19X) 1689 (1.06X) 1686 (7.05X)

Table 4: Average execution times for kernels in differing scenarios on the Volta GPU with 80 SMs.

Serial (ms) Concurrent-Isolated (ms) Concurrent-Colocated (ms)

Kernel A Kernel B Total Kernel A Kernel B Kernel A Kernel B

L1 Cache-Dependent 85 51 136 84 55 104 (1.22X) 104 (2.04X)

Compute-Intensive 869 333 1202 870 480 (1.44X) 871 986 (2.96X)

Memory-Intensive 2458 34 2492 2459 622 (18.29X) 2492 710 (20.88X)

Transfer-Bandwidth-Dep 3156 121 3277 3194 (1.01X) 1113 (9.2X) 3295 (1.04X) 1325 (10.95X)

GPUs looked at in this work can be found in Table 2. The
only differences in the kernels run on the Pascal and Volta
GPUs were related to the hardware differences between them
and the Turing GPU, such as the number of threads per
block and the total number of blocks. The only other change
was that for the L1-cache-dependent kernel, adjustments
were made for the differences in the size and architecture
of the caches.

The results for the Pascal GPU can be seen in Table 3,
and those for the Volta GPU can be found in Table 4. The
only major difference in these results from the Turing GPU
is that for the memory-intensive kernel on the Pascal GPU,

Kernel B did not see any performance degradation in the
concurrent-isolated case. This is because of the fact that
with only four blocks, there was no contention for compu-
tational resources when they were all scheduled to the same
SM; the Turing GPU kernel had eight blocks, and scheduling
all eight to one GPU was enough to cause some contention.
However, we stress that the ultimate meaning behind these
results remains the same; the same impacts on execution
time were found in the Pascal and Volta GPU results as in
the Turing results, indicating the same behavior from the
scheduler during the execution of these concurrent work-
loads.


