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ABSTRACT
In this paper, we propose a class of approximation algo-
rithms for the max-weight matching (MWM) policy for input-
queued switches, called expected 1-APRX. We establish the
state space collapse (SSC) result for expected 1-APRX, and
characterize its queue length behavior in the heavy-traffic
limit. Our results indicate that expected 1-APRX can ap-
proximately approach the optimal queue length scaling in
the heavy-traffic regime. We further propose an expected
1-APRX based policy, called MWM with adaptive update
(MWM-AU), for reducing communication cost due to queue
information update. Our simulation results demonstrate
that the proposed policy can significantly reduce queue up-
date overhead, while maintaining the delay performance com-
parable to that of MWM.
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1. INTRODUCTION
The n×n switch model has been intensively studied, ow-

ing to its importance in modeling and studying network sce-
narios including high-speed routers, data centers networks
and wireless networks The system is assumed to be a discrete-
time network consisting of n2 queues with n input ports and
n output ports. At every time, a scheduler chooses a match-
ing between the inputs and outputs to transmit one packet
from each input port to its destination. The objective is
to find optimal scheduling policies so as to achieve good
throughput and delay performance.

A well-known scheduling algorithm for the input-queued
switch system is the max-weight matching algorithm (MWM)
Despite many attractive properties, e.g., throughput opti-
mal[3], optimal heavy-traffic queue length[4], MWM suffers
from a high computational complexity of O(n3) for an n×n
switch [5], due to the need to compute a maximum weighted
matching in every time slot. To reduce the implementation
complexity, [6] introduced a general class of approximation
algorithms for MWM, called 1-APRX, which computes a
schedule with weight difference to MWM upper bounded
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by a sublinear function, and showed that 1-APRX achieves
throughput optimality.

In this paper, we propose the expected 1-APRX policy,
an extended version of the 1-APRX algorithm [6], and fo-
cus on its heavy-traffic analysis for switch systems. We first
show that expected 1-APRX exhibits the similar state space
collapse (SSC) as MWM [4] in a weak sense. Then, we uti-
lize the SSC result and drift technique to characterize the
heavy-traffic behavior of the queue lengths, which indicates
that expected 1-APRX approximates the optimal scaling
achieved by MWM in the heavy-traffic regime. In addition,
we apply the expected 1-APRX policy to design commu-
nication efficient scheduling algorithms. In particular, we
propose a MWM policy with adaptive updates (MWM-AU)
for systems where queue information update can be costly
and affect algorithm performance, e.g., datacenters [1] and
wireless networks [2]. We prove the throughput optimality
of MWM-AU and demonstrate through numerical experi-
ments that it significantly reduces queue update information
while maintaining the same level of throughput and delay
performance as MWM. We carry out our analysis under the
general saturated setting. Our analysis also well handles the
additional challenges raised by the weight approximation in
scheduling, which cannot be directly addressed with existing
analysis.

2. EXPECTED 1-APRX
The expected 1-APRX can be defined as follows.

Definition 1. Denote the weight of a schedule obtained by
a scheduling algorithm π at time t by Wπ(t), and denote the
weight of a schedule under MWM for the same switch state
by W ∗(t). A policy π is defined to be a expected 1-APRX
algorithm, if the following condition always holds:

E {Wπ(t)|Q(t)} ≥ W ∗(t)− f (W ∗(t)) (1)

where Q(t) is the current queue state vector, the expectation
E is taken with respect to the system randomness and policy
π, and f(·) is a sub-linear function, i.e., limx→∞

f(x)
x

= 0.

The original version of 1-APRX in [6] only considered a
deterministic difference.

3. HEAVY TRAFFIC RESULT
In this paper, we consider the switch where n1 ≤ n in-

put ports (rows) and n2 ≤ n output ports (columns) are



saturated. Without loss of generality, we assume that in-
put ports (rows) 1, 2, . . . , n1 and output ports (columns)
1, 2, . . . , n2 are saturated.

3.1 State-Space Collapse
Consider the following subspace:

Sn1n2 ≜
{
x ∈ Rn2

: x =

n1∑
i=1

wie
(i) +

n2∑
j=1

w̃j ẽ
(j) where

wi ∈ R for 1 ≤ i ≤ n1, w̃j ∈ R for 1 ≤ j ≤ n2}

We first show that the system will collapse on the Sn1n2 in
steady state by theorem 1, which means that as the param-
eter ϵ approaches zero, the mean arrival rate approaches the
boundary of the capacity region and Q

(ϵ)
⊥S can be neglected

in comparison to the dominant term Q
(ϵ)

∥S .

Theorem 1. Consider a set of switch systems indexed by
ϵ under an expected 1-APRX scheduling policy π. For any
fixed β > 0, and each system with 0 < ϵ ≤ ν

′
min/4(1 +

2β)‖η‖, the steady state queue lengths vector satisfies:

E
[∥∥∥Q(ϵ)

⊥S

∥∥∥− β
∥∥∥Q(ϵ)

∥S

∥∥∥] ≤ Mβ

where Mβ is independent of ϵ.
The above result indicates that for any β > 0, as ϵ → 0

E
[∥∥∥Q(ϵ)

⊥S

∥∥∥] /E [∥∥∥Q(ϵ)
∥∥∥] < β

Therefore, E
[∥∥∥Q(ϵ)

⊥S

∥∥∥] can be controlled by
∥∥∥Q(ϵ)

∥∥∥.

3.2 Upper Bound
Then, we can obtain an asymptotically tight upper bound

for heavy-traffic queue length .
Theorem 2. Consider a set of switch systems under an

expected 1-APRX scheduling policy , the steady state queue
lengths vector satisfies

ϵ
(
E[〈Q(ϵ)

,α〉]− (‖α‖+ 2n2 min{n1 + n2, n})E
[∥∥∥Q(ϵ)

⊥S

∥∥∥])
≤ 1

2

〈
(σ(ϵ))2, ζ

〉
+B(ϵ)

for any fixed weight vector α ∈ Rn2 such that
〈
α, e(i)

〉
=

n
〈
η, e(i)

〉
for i ≤ n1 and

〈
α, ẽ(j)

〉
= n

〈
η, ẽ(j)

〉
for j ≤ n2,

where limϵ→0 B(ϵ) = 0, and the vector ζ only depends on
n1, n2.

As stated in Section 3.1, E
[∥∥Q⊥S

∥∥] /E [∥∥Q∥∥] → 0 when ϵ
approaches 0. Thus, the upper bound for weighted queue
length ϵE[〈Q,α〉] is close to 1

2

〈
σ2, ζ

〉
in the heavy-traffic

limit.

4. MWM WITH ADAPTIVE UPDATE
Most existing works on switch operating under MWM

consider instantaneous updates, where each queue updates
its length to the scheduler at every time. However, in sce-
narios where the decision maker needs to collect queue in-
formation in a distributed system, e.g., in a datacenter net-
work [1] or a wireless network [2], this can involve high com-
munication overhead and impact system performance.1 We
1The switch setting can model general single-hop networks.

(a) Average Queue Updates (b) Mean queue length

Figure 1: Communication frequency and delay performance
versus traffic load � under uniform traffic. n = 4

propose an Adaptive Update scheme, which updates for each
queue whenever the absolute value of the difference between
the current length and the last update exceeds some thresh-
old. The threshold has an adaptive form, g (Qij(t)) , where
g : R+ ∪ {0} 7→ R+ ∪ {0} is a sub-linear, increasing and
concave function, e.g. γx1−σ with 0 < σ < 1.

It can be regarded as the expected 1-APRX policy in the
following sense:

Wa(t) ≥ W ∗(t)− 2ng (W ∗(t)/n)

Simulations in Fig.1 illustrate that MWM with Adaptive
Update can significantly reduce communication frequency
without sacrificing delay performance.
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