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ABSTRACT
Emerging software-defined and programmable networking
technologies enable more adaptive communication infras-
tructures. However, leveraging these flexibilities and op-
erating networks more adaptively is challenging, as the un-
derlying infrastructure remains a complex distributed sys-
tem that is a subject to delays, and as consistency prop-
erties need to be preserved transiently, even during net-
work reconfiguration. Motivated by these challenges, we
propose Latte, an automated approach to minimize the la-
tency of network update schedules by avoiding unnecessary
waiting times and exploiting concurrency, while at the same
time provably ensuring a wide range of fundamental consis-
tency properties like waypoint enforcement. To enable auto-
mated reasoning about the performance and consistency of
software-defined networks during an update, we introduce
the model of timed-arc colored Petri nets: an extension of
Petri nets which allows us to account for time aspects in
asynchronous networks, including characteristic timing be-
haviors, modeled as timed and colored tokens. This novel
formalism may be of independent interest. Latte relies on
an efficient translation of specific network update problems
into timed-arc colored Petri nets. We show that the con-
structed nets can be analyzed efficiently via their unfolding
into existing timed-arc Petri nets. We integrate Latte into
the state-of-the-art model checking tool TAPAAL, and find
that in many cases, we are able to reduce the latency of
network updates by 90% or more.

Keywords
update synthesis, waypoint enforcement, time scheduling,
timed-arc colored Petri nets

1. INTRODUCTION
Programmable and software-defined networks introduce

great flexibilities in how communication networks can be op-
erated and optimized over time. Especially, the possibility
to quickly and programmatically update configurations and
routes, received much attention over the last years [17]. Such
reconfigurations can be used, e.g., to improve the perfor-
mance of traffic engineering by dynamically adjusting routes
to the current demand and workload; other use cases are re-
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lated to an improved fault-tolerance, e.g., allowing for a fast
reaction to failures or supporting maintenance work [11].

However, while programmability is an enabler of more
adaptive or even “self-driving” [15] communication net-
works, supporting such reconfigurations is highly non-
trivial, for three reasons. First, modern communication net-
works typically come with stringent dependability guaran-
tees, requiring consistency properties at any time, i.e., tran-
siently during reconfigurations. Second, although software-
defined networks provide a simple logically centralized ab-
straction, the underlying network remains a complex dis-
tributed system, where individual configuration updates are
communicated and realized asynchronously and may hence
take effect at different times. Third, updates should not only
be implemented consistently but also fast: a main promise
of more adaptive networks. The major Internet outage in
Japan in 2017, which was due to an incorrect routing table
update [10], highlights the importance of transiently correct
reconfigurations more generally.

Existing consistent network update mechanisms in the lit-
erature are often based on hand-crafted algorithms and ei-
ther assume an overly pessimistic model where the underly-
ing network may be arbitrarily asynchronous (e.g., [28, 26]),
or an overly optimistic model where updates can be timed
precisely (e.g., [30, 41]). The resulting update schedules are
likely to be unnecessarily slow (in the pessimistic model)
or may be infeasible without specific hardware (in the op-
timistic model). Yet another class of algorithms relies on
the modification of packet headers (e.g., to carry state in-
formation), which however can introduce further overheads
or incompatibilities with existing protocols [35].

Our paper is motivated by the desire to automate the pro-
cess of designing consistent network update algorithms. In
particular, we believe that the future self-driving commu-
nication networks envisioned by the networking community
require mechanisms that provide formal correctness guaran-
tees but also perform well, both in theory (analytically) as
well as in practice (in the “average case”). We hence envi-
sion algorithms that automatically improve the latency of
network updates by removing unnecessary waiting times in
update schedules while accounting for possible differences
in update processing times: different packet types, such as
VoIP, SSH, or VPN, entail different forwarding times at
switches [7], hence requiring different waiting intervals; sim-
ilarly, also the specific switch type effects forwarding times.

We develop a fully automated approach to optimize the
performance of network update schedulers accounting for



such possible differences in the update time characteris-
tics. In particular, we aim to maximize update concurrency
and minimize waiting times, while ensuring transient con-
sistency. Minimizing the update duration is critical because
the network may experience irregular behavior during the
update procedure. On the other hand, the computation of
the optimal update schedule is less time-critical as it occurs
ahead of time and does not influence the reliability of the
network operation. In our work, we support a wide range of
per-packet consistency properties such as:

• Waypoint enforcement: Each packet traverses
a specific waypoint (e.g., implementing a security-
critical network function such as a firewall or intrusion
detection system) during the update. We also support
the traversal of a sequence of (ordered) waypoints as
well as sets of (unordered) waypoints: a relevant sce-
nario in the context of service chaining [37].

• Loop freedom: A packet will never end up in a loop
during the update. We support both strong and weak
loop-freedom [25].

• Blacklist enforcement: A packet never traverses
certain blacklisted parts (see e.g. [20]) of the network.

• Blackhole freedom: A packet never encounters a
blackhole [28] where no forwarding is currently defined.

Our approach to synthesize such time-optimized and prov-
ably correct update schedules relies on a novel application of
automata theory, and in particular Petri nets: a well-known
formal framework to model and reason about distributed
and concurrent systems. However, in order to account for
timing aspects and in particular, differences in update and
processing times, we extend the traditional Petri nets and in-
troduce the notion of timed-arc colored Petri nets (TACPN):
Petri nets that account for timing issues and differences in
timing behaviors (encoded as colors). By encoding time in
tokens, TACPNs allow us to keep track of the time analyti-
cally.

We show that despite being more general and powerful,
timed-arc colored Petri nets can be analyzed efficiently, and
we present a reduction algorithm accordingly: we show how
to unfold TACPNs into timed-arc Petri nets without col-
ors where efficient verifications engines are already avail-
able [13]. The resulting solution can be used to efficiently
synthesize optimized update schedules, providing correct-
ness guarantees as well as significantly improved update la-
tency in practice.

1.1 Our Contributions
Our main contribution is Latte (Latency-aware

transiently correct updates), an automated optimiza-
tion approach for the synthesis of minimal delays between
switch updates in order to ensure network update schedules
of minimal latency that provably maintain general transient
consistency properties. We achieve this by introducing a
novel notion of timed-arc colored Petri nets, for which we
define a formal syntax and semantics. Then we present an
efficient verification algorithm by unfolding our timed-arc
colored Petri nets into existing timed-arc Petri nets, while
preserving timed bisimilarity and hence also the consistency
(safety) properties of network updates. We integrate
Latte into the leading model checker TAPAAL [12] and

report on our case study based on real-world network
topologies, which show that our approach indeed results in
significantly faster schedules.

As an independent contribution to the research commu-
nity and to ensure reproducibility, we make Latte publicly
available as an open source tool, including the integration of
the modeling formalism into the TAPAAL GUI in order to
support the visualization and graphical modelling of timed-
arc colored Petri nets.

1.2 Organization
The remainder of this paper is organized as follows. We

present a formalization of the problem in Section 2 and intro-
duce the notion of the timed-arc colored Petri nets approach
in Section 3. In Section 4, we show how to efficiently solve
the problem instances by reduction, and report on our pro-
totype and simulation results in Section 5. After reviewing
related work in Section 6, we conclude in Section 7.

2. MODEL AND METRICS
In a nutshell, the network update problem asks for a

schedule to update a route from its initial path to an up-
dated (final) path. The routes are realized by the forwarding
functions of switches (or synonymously here: routers). The
update schedule is implemented by a (logically centralized)
controller that communicates updates to the switches. In
particular, we are interested in update schemes that do not
require packet header rewriting. In order to improve per-
formance, updates are sent out by the controller in batches:
due to the asynchronous communication, the updates in one
batch can take effect in any order. Once the switches in-
volved in a batch finish their updates, the controller sched-
ules the next batch of updates: either immediately, or after
a certain delay, as it may be required to ensure consistency
properties such as waypoint enforcement.

Ideally, in order to optimize update delays, the number
of interactions with the controller should be minimized and
a single batch with all updates scheduled at once. How-
ever, it is well-known that this approach can yield various
transient inconsistencies such as loops, blackholes, or viola-
tions of waypoint enforcement policies [28, 27]. Accordingly,
our goal is to automatically optimize the delays in update
schedules and to bundle as many updates to be issued con-
currently as possible, while guaranteeing consistency of the
update.

More formally, we define the network update problem as a
tuple (S, S0, initial ,final , X1 . . . Xk) where

• S is a finite set of switches,

• S0 ∈ S is an initial switch,

• initial : S ↪→ S is the initial partial forwarding func-
tion,

• final : S ↪→ S is the final partial forwarding function,
and

• X1 . . . Xk ⊆ (2S)∗ is a sequence of nonempty groups of
switches (batches) that are updated concurrently such
that the sets of switches X1, . . . , Xk form a partition-
ing of the set S, i.e. ∪k

i=1Xi = S and Xi ∩Xj = ∅ for
all i and j where 1 ≤ i < j ≤ k.
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Figure 1: Basic example of a network update problem

A partial update X ⊆ S is a subset of switches that are
already updated and respect the update sequence X1 . . . Xk,
meaning that there exists a j, 1 < j ≤ k, such that X =
∪j−1

i=1Xi∪Y where Y ⊆ Xj . The partial update hence models
the effect of asynchrony where only a subset of switches from
the current batch have been updated so far. Clearly, the
empty set is a partial update (no switches are updated yet)
and the set of all switches is also a partial update (once all
switches are updated).

Any partial update X defines the corresponding net-
work trace starting from the initial switch S0 as the max-
imal sequence of switches S0S1 . . . Sm such that for every
i, 0 ≤ i < m, we have either initial(Si) = Si+1 for every
Si 6∈ X, or final(Si) = Si+1 for every Si ∈ X. By maximal-
ity we mean that if Sm 6∈ X then initial(Sm) is undefined
and if Sm ∈ X then final(Sm) is undefined.

By Traces we denote the set of all network traces for all
possible partial updates. We can now ask several properties
about the set Traces such as:

• Waypoint enforcement. Given an end switch Send

and a waypoint switch S, we want to guarantee that
every trace from Traces that starts in S0 and ends in
Send contains also the waypoint switch S (or alterna-
tively contains a subsequence of a priory given ordered
or unordered list of waypoint switches).

• Loop freedom. For strong loop-freedom, we require
that any switch appears at most once in any trace from
Traces. In case of weak loop-freedom, we demand this
property only for traces that end in an a priory selected
end switch.

• Blacklist enforcement. Given a list of blacklisted
switches, we want to ensure that all traces from Traces
never contain any blacklisted switch.

• Blackhole freedom. Given an end switch Send , we
want to guarantee that every trace from Traces always
ends with the switch Send .

Example 1. Let us formalize a basic network up-
date problem from the literature [25]: in this ex-
ample we consider the network update instance
({S0, S1, S2, S3}, S0, initial , final , {S1} · {S0, S2} · {S3})
where initial(S0) = S1, initial(S1) = S2, initial(S2) = S3

and final(S0) = S2, final(S1) = S3, final(S2) = S1.
The update problem is graphically depicted in Figure 1
where the solid lines correspond to the initial forwarding
function and the dashed lines to the final function. The
desired waypointing property is that each packet that

starts at S0 and leaves at S3 must visit the waypoint
S1 (denoted by a filled circle in our figure). A possible
partial update is X = {S1, S2} which gives the network
trace S0S1S3. Another partial update is X = {S0, S1}
and the corresponding network trace is S0S2S3. The
set of all network traces can now be constructed by enu-
merating all partial updates and realizing that Traces =
{S0S1S2S3, S0S1S3, S0S2S3, S0S1S3, S0S2S1S3}.
Clearly, the waypoint enforcement property is violated: the
set of traces contains the sequence S0S2S3 that forwards a
packet from S0 to S3 without visiting the waypoint S1.

Let us now consider that we want to perform a network
update according to the group of switches X1 . . . Xk. In
practical scenarios, we first update all switches from the set
X1 (without requiring any specific order of updates) and
then we wait for a sufficiently long time before we start
updating the switches from the group X2 (and so on until all
groups of switches are updated). Clearly, we must guarantee
that all switches from X1 finished their update before we
start updating switches from X2. This can be achieved by
waiting for the maximum update time of any switch from X1

plus the maximum time a packet can travel in the network.
After this delay, it is now safe to update the switches from
the group X2 and so on.

There exist different timing behaviors in software-defined
networks which, if accounted for, may significantly improve
the latency of updates. However, the interaction between
the timings of packet forwarding and switch updates can be
quite intricate, and hence, in order to provide rigorous safety
guarantees that enforce the absence of certain undesirable
traces during the network update, we need to provide a for-
mal framework accordingly. In particular, in the following
sections we provide a method for minimizing the latency of
a network update by using model checking techniques.

3. TIMED-ARC COLORED PETRI NETS
In order to automate the generation of fast network up-

date schedules, and in order to account for specific timing
behavior (e.g., related to packet processing or switch update
time estimation), we suggest a novel extension of the classic
Petri nets model that is introduced in this section.

Let us first introduce some preliminaries. The configura-
tion (marking) of a Petri net [33] is generally determined by
its tokens located at places. In the timed-arc colored Petri
net model that we introduce in this section, tokens contain
both the color information as well as the timing informa-
tion (their age taken from the domain of nonnegative reals).
Places and input-arcs are then associated with timing con-
straints specific to the token colors. We shall first define the
P/T net and then add both color and timining features. Let
N0 be the set of natural numbers including 0 and let N∞0 be
the set N0 together with the special infinity symbol ∞ such
that n <∞ for any number n ∈ N0.

A Petri net is a tuple N = (P, T,W,WI) where P is a
finite set of places, T is a finite set of transitions such that
P ∩T = ∅, W : (P×T )∪(T×P )→ N0 is the weight function
for the input arcs from places to transitions and output arcs
from transitions to places and WI : P × T → N∞0 is the
inhibitor weight function that assigns weights to inhibitor
arcs from places to transitions.

A marking on a Petri net N is a function M : P → N0

such that M(p) denotes the number of tokens in the place
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Figure 2: Example of a Timed-Arc Colored Petri Net (TACPN)

p ∈ P . A transition t ∈ T is enabled in a marking M if
W (p, t) ≤ M(p) and WI(p, t) > M(p) for all places p ∈ P .
In other words, each input arc must have enough tokens that
can be consumed from the connected place and all inhibitor
arcs must be disabled. If a transition t is enabled in M , it
can fire and produce a marking M ′ such that for all places
p ∈ P we have M ′(p) = M(p) − W (p, t) + W (t, p). We
notice that inhibitor arcs only influence the enabledness of
a transition but they do not participate in transition firing.

3.1 Color and Time Extension
We shall now describe the color and time extension of the

basic Petri net model that we use for modelling of network
updates. We assume a given (possibly infinite) set of colors
C such that every place p in the net is assigned a finite
subset of C called the color type of p. We also assume that
with each place p there is an associated age invariant of the
form c ≤ Ic, where Ic ∈ N∞0 , for each color c from the color
type of p.

A token in a timed-arc colored Petri net (TACPN) is then
a triple (p, x, c) where p is the location of the token, c is a
color from the color type of p and x is the age of the token
(initially all tokens are of age 0) such that x ≤ Ic where
Ic is the upper bound of the age invariant for the color c.
A marking in TACPN is a multiset of tokens. Transition
enabledness in a given marking is now conditioned also on
the colors and ages of tokens in a marking, in addition to
the requirement on a number of tokens, as in the classical
Petri net model introduced above. We assume that each
input arc from a place p to a transition t is annotated (for
each color c from the color type of p) with the expressions
c→ [a, b] where [a, b] is a time interval such that a, b ∈ N∞0
and a ≤ b. The intuition is that the age of each token of color
c that will be consumed during the transition firing must
belong to the interval [a, b]. Moreover, every such input arc
is assigned an arc expression of the form n′1(τ1)+. . .+n′k(τk)
where n1, . . . , nk ∈ N0 is the number of tokens of the color
expressions τ1, . . . , τk to be consumed during the transition
firing. For the purpose of this paper, we assume that τi,
1 ≤ i ≤ k, is either a concrete color c or a variable that
allows for a binding to any color from the color type of p.
Similarly, each output arc from a transition to a place is

also assigned an arc expression; however, output arcs do
not contain any time intervals as the age of newly produced
tokens by transition firing is reset to 0.

Remark 1. In the general TACPN model we allow for
more complex color expressions that include also color prod-
ucts as well as basic operations for color manipulation like
e.g. color successor and predecessor in case of cyclic color
types. Moreover transitions can contain guards that further
restrict the transition firing. Similarly, it is possible to pre-
serve the age of tokens during transition firing by means of
transport arcs and to define urgent transitions that restrict
time delay whenever enabled. These features are not nec-
essary for modelling of the network updates and in order
to simplify the presentation, we do not define them in the
present paper.

Example. Figure 2 shows a graphical representation of
an TACPN example. The net has five places p0, . . . , p4 de-
noted by circles and each place has an associated color type
in square parenthesis together with the age invariants. For
example the place p0 is of color type Dot (classical Petri net
token) and the age invariant says that a token can reach age
at most 50, after which the time cannot progress anymore.
Similarly, the color type of p1 is PacketType containing three
elements ssh, web and vpn. Each color element should have
defined its own age invariant, however, we abbreviate by the
star notation ∗ ≤ 25 the fact that all three colors share the
same age invariant. Places that do not have listed any age
invariant, like p3 and p4, assume the default invariant ∗ ≤ ∞
that does not restrict the possible time delays. Transitions
in the net are denoted by rectangles and represent events
in the net (a packet entering a network, dropping a packet,
forwarding a packet to p2 and routing the packet: external
or internal traffic). Places and transitions are connected by
arcs that move tokens during transition firing. For example
the transition Enter will consume one token from p0, return
the token back (while resetting its age to 0) and producing
two tokens with color type PacketType into the place p1.
Depending on the binding of the variable pck to one of the
three different colors in PacketType, the two produced to-
kens can be of three different colors. Again, their age is reset
to 0. The input arc to the transition Enter does not contain



any interval, assuming the default interval [0,∞] that does
not restrict the age of the consumed token in any way. On
the other hand, the arc from p1 to Forward can only con-
sume a token with color web of age between 10 and 25 or
with color ssh or vpn of age between 4 and 6 (here we again
use the star notation). An arc can also consume more than
one token, like for example the arc from p2 to Internal that
requires one ssh token and two vpn tokens. The firing of
Internal consumes three such tokens of corresponding ages
(ssh between 15 and 22 and vpn between 18 and 22) and
produces three fresh tokens of type Dot and with age 0. Fi-
nally, the arc with the circle-tip from p2 to Forward is an
inhibitor arc of weight 10 which means that as soon as the
place p2 contains 10 or more tokens, it disables the firing of
the transition Forward .

We shall now define the behavior of TACPN that consists
of a nondeterministic choice between firing one of the cur-
rently enabled transitions and a time delay where all tokens
age by the same delay (unless the delay is disabled by some
age invariant). An example of transition firings from the
initial marking {(p0, 0, •)} is shown below

{(p0, 0, •)}
Enter−−−→

{(p0, 0, •), (p1, 0,web), (p1, 0,web)} delay 20−−−−−→

{(p0, 20, •), (p1, 20,web), (p1, 20,web)} Forward−−−−−→

{(p0, 20, •), (p1, 20,web), (p2, 0,web)} delay 5−−−−→

{(p0, 25, •), (p1, 25,web), (p2, 5,web)} Drop−−−→

{(p0, 25, •), (p2, 5,web)} delay 16−−−−−→

{(p0, 41, •), (p2, 21,web)} External−−−−−→

{(p0, 41, •), (p3, 0, •)}
Enter−−−→ . . .

where both when firing the transition Enter and Forward
we use the binding pck = web. We notice that once there
is a token (p1, 25,web) in the net, the age invariant in place
p1 disables the possibility of time delay and transition fir-
ing becomes urgent (in our example we decided to drop the
token).

3.2 Tool Support for TACPN
The time-arc colored Petri nets underlying our consistent

network update framework need strong tool support in or-
der to be applied on real-world scenarios. For that purpose,
we implemented and integrated our model of TACPN in the
GUI of the open source tool TAPAAL [12]. This allows us
to graphically draw the nets as well as to answer reachabil-
ity and CTL queries with atomic propositions that consist of
upper and lower bounds on the number of tokens in different
places of the net, and their Boolean combinations. We also
implemented unfolding of TACPN nets into plain timed-arc
Petri nets (where the only color type is Dot = {•}) by ex-
panding the number of places in order to model tokens of dif-
ferent colors. The unfolding relies on the classical approach
where color domains are expanded into multiple places and
we had to further extend this unfolding technique to deal
with the timing information and with inhibitor arcs.

p
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Figure 3: Unfolding example

An example of the unfolding process is given in Figure 3
where the color type of the place p is {R,G,B} and it is
unfolded into three places (p,R), (p,G) and (p,B). The
tokens of age and color (5, G), (2, B) and (7, B) are then
placed in the corresponding unfolded places while preserving
their age. Similarly, the color type of the place p′ is {tt ,ff }.
The unfolding is given for the binding of the variable x to
the color R and we also add a special place (p, sum) where
we keep the accumulated number of tokens in the original
place p (for the purpose of inhibitor arc tests). The resulting
timed-arc Petri net model can be proved to be timed bisim-
ilar to the original net with colors, hence preserving the
answers to (among others) reachability queries that we need
for our application. The unfolded net and query can then
be verified using existing verification engines of TAPAAL,
both for the discrete [6] as well as continuous [13] time.

4. TIME OPTIMAL SCHEDULING
Given the concepts introduced above, we can now present

our approach for generating fast update schedules, ensuring
transient consistency properties. In a nutshell, Latte trans-
lates a given network update problem into a timed-arc col-
ored Petri net in order to compute how the delay between
switch updates can be automatically minimized, and up-
dates batched, hence optimizing the overall network update
time. For ease of presentation, we demonstrate Latte on the
waypoint enforcement property in the following; at the end
of this section, we discuss how our approach can be gener-
alized to other types of safety properties.

4.1 Overview of Reduction to TACPN
Let us assume a given instance of a network update prob-

lem (S, S0, initial ,final , X1 . . . Xk). The input is automat-
ically processed by our translation algorithm that creates
different types of net components as well as a query for
the verification. A conceptual overview of the translation
is displayed in Figure 4. The translation algorithm works as
follows.

1) We create time constraints based on packet input types
and for each packet type we create a color in the color
type PckType.
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Figure 4: Overview of the translation algorithm

2) We create the start and the end component represent-
ing the start and end switches of the route.

3) For all switches, we create a separate switch com-
ponent. A special component is created for a way-
point switch that remembers whether a packet passed
through the switch.

4) For each switch we create an update component that
uses a timing interval for the duration of the update.

5) We create an initialization sequence for switch updates
and use the constants C1, C2, . . . as the waiting delays
before the next switch update is initialized.

6) We create a TACPN query for verification and use
the bisection algorithm to minimize the constants
C1, C2, . . . while still preserving the waypoint enforce-
ment property.

The different components that we create share places.
This is denoted by the dotted circle around the place and
the idea is that all such shared places with the same name
are merged together. We use the colors to model the differ-
ent timing behaviors of different packet types, allowing us to
use the timing information to calculate a safe update delay
given by the following expression:

slowest-switch-update+
#switches-on-the-route× slowest-hop

(1)

In this safe delay estimate we include the time for the
slowest switch update in order to make sure that all for-
warding rules for all switches from a given batch are fully
updated before we proceed to the next batch. But at the
same time, we have to make sure that all packets that can
still be in transit (and could potentially use some of the old
forwarding rules), left the network. The second part hence
approximates the latency of the routing path by multiply-
ing the number of switches involved in the routing with the
slowest packet forwarding time.

4.2 Examples of Switch and Next-Hop Timing
While our formalization and approach is more general,

in the following, we will discuss some specific examples of

Packet Size [Byte] Latency [µs± 0.5] Interval[µs]
VoIP [3] 218 2.2 [1, 3]
SSH [2] 312 2.1 [1, 3]

VPN [38] 1300 3.2 [2, 4]

Table 1: Network packet types and next-hop latency

Algorithm Min [ms] Max [ms] Interval[µs]
Optimal 0 2.5 [0, 250000]

Batch-ready 0.2 2.5 [20000, 250000]
No scheduler 0.5 2.5 [50000, 250000]

Table 2: Switch update times in FatTree topology

packet and switch update times. These examples will also
serve us as case studies in the evaluation.
Packet processing time. Different types of packets can
occur with different processing times. For example, the re-
sulting latency can be a function of packet size, as shown
by Bauer et al. [7]: the authors find that the latency for,
e.g., a Pica8 P3297 switch [1] can vary by 0.5 µs (difference
between an upper and lower bound, see Figure 3 in [7]). In
Table 1, we summarize the latency for some typical packet
types on Pica8 P3297 switch and show the latency interval
that we use in our experiments.
Switch update time estimation. The cumulative time
for the switch update (installation of a new set of forwarding
rules) can also differ significantly depending on the hardware
and the scheduler that performs the update. For example, in
Figure 5 from [32], the authors show the cumulative distri-
bution function of flow installation for 1000 flows on a Fat-
Tree topology. In Table 2 we show the update completion
times for the different scheduling algorithms when installing
a batch of new forwarding rules and approximate them by
intervals. As an example, we use the timing interval with
no scheduler in our translation and experiments.

4.3 Translation Algorithm
We can now proceed to define the net components that are

created during the translation of a network update instance
to a corresponding TACPN.

Figure 5a creates an initial component that at any mo-
ment allows to inject a packet into the network by firing the
transition T0. Depending on the binding of the variable
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Figure 5: Translation of update synthesis into TACPN

pck to either VPN, SSH or VoIP, three different types of
packets can be created and placed into the place S0 that
corresponds to activation of the initial switch S0. The place
S0 is a shared place, meaning that it is the same place as the
initial place for the component corresponding to the switch
S0 from Figure 5c.

Figure 5b shows a component representing the update of
a given switch. One such component is created for each
switch S. The update for the switch S is initialized by plac-
ing a token to the place StartUpdateS and the duration
of the update is determined by the update interval from
Table 2 on the input arc to T1 and it is enforced by the
invariant ∗ ≤ Max . Once T1 is fired, it removes the token
from SInitialEnf and creates a token in SFinalEnf . These are
shared places that are used in the switch component to de-
termine whether the forwarding should be done according to
the function initial (in case the token is in SInitialEnf ) or to

the function final (in case the token is moved to SFinalEnf ).
Figure 5c is a component that executes the packet for-

warding of a given switch S. Once a packet arrives to
the shared place S, it is forwarded either to the place
SInitial assuming that there is a token in SInitialEnf and
initial(S) = SInitial , or to the place SFinal in case that the
token is in SInitialEnf and final(S) = SFinal . The duration
of such packet forwarding is determined by its color (packet
type) and the associated forwarding interval from Table 1,
while the age invariants ensure that a packet cannot stay at
a switch for more than the upper bound of the forwarding
interval.

Figure 5d models the execution of an update sequence
of the network according to the switch update groups
X1, . . . , Xk. We assume that the ordering of the switches
S0, S1 . . . , Sn respects this update sequence such that the
switches from the group Xi always come before the switches
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Figure 6: Continuation of update synthesis reduction

from the group Xi+1. The update sequence can start at
any time by firing the transition T1, which initiates the
update of the switch S0 by placing a token to the place
StartUpdateS0. At the same time a token of age 0 is
placed into the place Step1 ensuring that the update of the
switch S1 starts exactly after C1 units of time. The remain-
ing switch updates are chained in a similar way such that
the constants C1, . . . , Cn−1 determine the respective delays
between switch updates are initiated. The constants that
separate switch updates from the same update group will
be set to 0, meaning that all such updates are started at the
same time. Switch updates from different update groups
must be separated by a delay that is sufficiently long in or-
der to guarantee that all previous switch updates finished
and there is no packet in the network that followed some of
the outdated forwarding rules—the delays are initially set
according to Equation 1.

Figure 6a shows a waypoint component for a switch S.
The forwarding part of a waypoint switch is the same as for
ordinary switches; however, it is prefixed with firing either
the transition T4 or T0. The purpose is to place a token to
a place WaypointVisited the first time the switch is used.
This is enforced by the fact that T4 is disabled as long as
WaypointVisited has no tokens. On the other hand, once
it contains a token, the transition T0 is now disabled be-
cause of the inhibitor arc and we have to necessarily fire T4
that keeps the token in WaypointVisited. This construc-
tion ensures that our Petri net remains bounded even in case
of cyclic behavior.

The general switch component can be simplified in case

that both the initial and final function return the same next-
hop switch, as shown in Figure 6b. Finally, in Figure 6c we
add the component for ending the packet forwarding once
the last switch SwitchEnd in the network routing is reached.
Due to the invariant ∗ ≤ 0 we enforce that the firing of the
transition T0 is urgent and the place EndNetwork gets
marked without any time delay.

The general construction of the TACPN net that mod-
els the behavior of a network update problem is now fin-
ished. Once the update sequence is initiated, the switches
are then updated with the delays determined by the con-
stants C1, . . . , Cn−1. At any moment a packet (token) can
be injected into the network and we execute a network trace
according to the current status of switch updates. Once
a waypoint is visited, we record this by placing a token
into WaypointVisited and we must guarantee that this
place is marked before the packet reaches the end switch
and the routing is terminated by placing a token into the
place EndNetwork. Hence the waypoint enforcement is
expressed by the following reachability query

AG (EndNetwork = 0 ∨ WaypointVisited ≥ 1)

claiming that during any execution of the net either the
place EndNetwork is still not marked (contains 0 tokens)
or if this is not the case then the place WaypointVisited
must contain at least one token.

Such a query can be automatically verified using our pro-
totype implementation in the tool TAPAAL [12] that loads
the network topology with forwarding tables and an up-
date sequence and automatically generates the correspond-



ing timed-arc colored Petri net on which it verifies the above
mentioned query.

4.4 Minimization of Delay Points
In case the waypoint enforcement is satisfied, we are in-

terested in minimizing the delays given by the constants
C1, . . . , Cn−1, without breaking the waypointing property.
We achieve this by sequentially minimizing the constants
(using the bisection method) until we find the minimal con-
stants that still satisfy waypoint enforcement. In order to
speedup the identification of updates that can be performed
concurrently, we start the bisection method by first setting
each constant to 0. As it is often the case that a large
degree of concurrency is possible during the updates, the
bisection method hence becomes computationally cheap as
it only needs to perform the repeated bisection between the
switch updates where a delay is necessary for preserving the
waypointing (typically less than two of such delay points
are necessary). As we demonstrate by the experiments in
the next section, this method scales even for larger update
sequences and allows us to significantly reduce the total up-
date time on several realistic network topologies. We con-
jecture that the sequential optimization of the delays in our
application actually produces the shortest possible update
sequence, however, the formal proof of this claim is beyond
the scope of this paper.

4.5 Other Consistency Properties
For the sake of presentation, we formally described the

translation to TACPN for the waypoint enforcement prop-
erty. However, other consistency properties can be easily
verified by small modifications of the translation.

• In order to optimize the update delays that preserve
loop freedom, we use for each switch the component for
waypoint switch as given in Figure 6a where the weight
of the inhibitor arc is 2 and the weights of the arcs con-
necting the WaypointVisited place with T4 have
weight 2 as well. To verify strong loop freedom, we
now ask the AG query (for all reachable markings) re-
quiring invariantly that the place WaypointVisited
for each switch S in the network contains at most one
token. In order to verify weak loop freedom, we re-
quire this property to hold only for execution traces
that include also the end switch.

• For blacklist enforcement, we simply put a token to a
newly created place each time a blacklist switch is vis-
ited and we verify that invariantly this place contains
no tokens.

• Blackhole freedom can be also verified by marking a
newly created place whenever a switch with undefined
next-hop is traversed and asking a query that makes
sure that this place is invariantly empty.

In practical applications, we are often interested in the
combination of a number of consistency properties that
should be invariantly preserved in conjunction during the
network update. As the consistency properties can be, as
argued above, expressed by the formulae AGϕ1, . . . ,AGϕn

that invarianly postutale that the corresponding properties
ϕ1, . . . , ϕn hold at any moment during the network update,
we can easily verify also the conjunction of these properties
as the formula AG(ϕ1∧. . .∧ϕn). The advantage is that there

Figure 7: Screenshot from Latte Plugin for TAPAAL

is only a slight overhead when more properties are checked
at the same time, as we are exploring the state space of the
Petri net only once, while verifying all properties during this
single search.

5. EVALUATION
In order to evaluate the performance achievable with our

approach and compare it to the state-of-the-art, we imple-
mented a prototype of Latte. In the following, we present
our empirical results and discuss our findings in a variety of
network update instances.

5.1 Prototype and Experimental Setup
The novel model of TACPN defined earlier is fully in-

tegrated as a plugin into the leading model checking tool
TAPAAL (also in the GUI) and we provide an efficient
C++ implementation of the unfolding algorithm for veri-
fication of TACPN. Our tool is now part of the TAPAAL
model checking suite and available as a beta-release at
http://tapaal.net/download/ in “Other Downloads”, to-
gether with an archive including all experiments needed to
reproduce the results presented in this section. The work-
flow of verifying network updates is fully automated and
depicted in the screenshots in Figure 7. First, the user calls
the Latte plugin in Tools menu, enters the paths to the net-
work topology file and the update sequence file and the tool
automatically parses these files and produces the TACPN
components. The tool opens a dialog where the user up-
dates the packet types together with their sizes in bytes the
analysis should consider. The verification is then initialized
by executing “Run analysis”.

In our evaluation, we use network topologies from the
Topology Zoo [23]. The initial and final configurations of
the network as well as the update sequence are generated by
the tool NetSynth [29]. The tool takes a network topology
and creates one or more source and destination pairs in the
given topology. It also creates an initial and final configura-
tion and an update sequence that guarantees consistency. In
our evaluation, we focus on waypoint enforcement as a case
study. The update sequence generated by NetSynth contains
the symbol # that requires a sufficiently long delay before



Network Route length Verification time[s] Default update [s] Optimized update [s] Improvement [%]
TLex 4 0.74 3.58 0.25 92.30%

HiberniaIreland 5 1.02 6.05 0.28 95.50%
Harnet 6 1.42 9.08 0.28 96.97%

UniC 7 1.49 12.65 0.28 97.83%
Oxford 8 2.02 16.78 0.28 98.36%

Xeex 10 5.86 26.68 0.28 98.97%
Sunet 11 10.23 32.45 0.28 99.15%

SwitchL3 12 18.88 38.78 0.28 99.29%
Psinet 14 89.67 53.01 0.28 99.48%
Uunet 15 211.86 61.05 0.28 99.55%

Renater2010 16 480.52 69.58 0.28 99.60%
Missouri 25 timeout 171.05 67.10 60.77%
Syringa 35 timeout 336.05 295.35 12.11%

VtlWavenet2011 35 timeout 336.06 295.35 12.11%

Table 3: Experiments with update sequences generated by NetSynth

the next switch gets updated. NetSynth does not identify
updates that can be performed concurently, assuming that
a safe delay point is inserted between any switch updates.
As explained earlier, our task is to minimize these delays
while still preserving the waypointing property. The sizes of
network topologies range from tens to a hundred of switches
(with the average network size of about 35 switches), how-
ever, we do not report these sizes in the results as our verifi-
cation algorithm is only marginally dependant on the topol-
ogy size. We instead report as the scaling parameter the
length of the update route as this is the parameter that has
the main influence on the performance of our method.

The experiments are run on a 64-bit Ubuntu 18.04 lap-
top with 16 GB RAM and Intel Core i7-7700HQ CPU @
2.80GHz x 8 with a 10 minute timeout.

5.2 Results
We are primarily interested in two metrics in our evalu-

ation: the runtime of our algorithm and the latency of the
generated update schedules. Our results are summarized in
Table 3. The size of each instance here is scaled by the route
length, which is the sum of the lengths of the packet routing
before and after the update. Verification time shows the to-
tal time needed to find the optimal delay constants that sep-
arate switch updates. The default update time is computed
by replacing each delay symbol # produced by NetSynth
with the safe delay constant as computed by Equation 1.
The optimized update time is the sum of all delay constants
computed by our algorithm as described in Section 4.4.

We can see that within the 10 minute timeout, we are able
to compute the optimal update times for route lengths up
to 16: over 90% improvement compared to the default up-
date times by considering the conservative delays between
updates as suggested by NetSynth. For the last three in-
stances our algorithm times out, meaning that the bisection
algorithm did not manage to find the optimal constants,
however, still achieving an improvement in the total update
time. The reason for the timeout is that the update se-
quences produced by NetSynth actually allow to run all up-
dates concurrently, meaning that all delay constants can be
set to 0. This creates a large number of switches that up-
date concurrently and we have to consider all (exponentially
many) interleavings of the updates in order to guarantee the
waypoint enforcement. On the other hand, as the tool Net-
Synth produces disjoint update sequences, the fact that all
updates can be concurrent can be determined by exact static

methods without the need of running the actual verification.
In the future work, we will explore the possibility of com-
bining our method with static analysis in order to further
improve the performance in case of a large number of con-
current updates.

We also explore (manually created) update sequences
where a concurrent update of all switches is not safe and
some minimum delays are necessary in order to guaran-
tee waypointing. The results are summarized in Table 4.
We can observe the optimal update times decrease but are
still over 90% more efficient compared to the default update
times. Moreover, the concurrency is reduced significantly
and this is reflected by the improved verification times. The
networks like Missouri that has 67 switches and update se-
quence of length 10 can still be verified in a matter of sec-
onds, due to the reduced concurrency in the update batches.

In summary, we find that the proposed method of opti-
mizing the network update time while preserving waypoint
enforcement is feasible for a standard benchmark of network
topologies and for up to 16 concurrent switch updates. Even
in the situations where the state space explodes for a higher
number of concurrent updates, we are still able to reduce
the total update time while preserving consistency proper-
ties, by simply inserting a safe delay in order to break more
than 16 concurrent updates in a row. We like to emphasize
that the critical factor here is the actual optimized update
time for the whole network, which we often reduce below
one second. The actual verification time for computing the
optimized update sequence ranges from seconds to several
minutes, however, as this is a pre-computation performed
offline, it is less critical and does not influence the network
performance: during the precomputation the network is sta-
ble as it is still forwarding using the previously loaded con-
figurations.

6. RELATED WORK
Motivated by the advent of software-defined and hence

more adaptive communication networks, the consistent net-
work update problem has received much attention over the
last years, see the recent survey [17] on the topic. The
seminal work by Reitblatt et al. [35], and many followup
works (e.g., [8, 24, 18, 21, 22, 9, 31]), rely on packet ver-
sions, ensuring a strong per-packet consistency. Mahajan
and Wattenhofer [28] initiated the study of fast network up-
date algorithms which do not require packet header rewrit-



Name Route length Verification time[s] Default update [s] Optimized update [s] Improvement [%]
HiberniaIreland 6 4.37 4.68 0.45 90.70%

Oxford 12 4.71 7.99 0.45 94.42%
SwitchL3 8 4.67 5.78 0.47 91.95%

Psinet 16 4.67 10.18 0.45 95.63%
Renater2010 7 4.23 5.23 0.45 91.48%

Missouri 10 5.14 6.88 0.45 93.53%
Ans 13 5.73 8.52 0.43 94.90%
Bics 13 6.20 12.65 0.44 96.56%

Globalcenter 14 7.63 17.88 0.45 97.51%
Geant2009 13 11.72 16.78 0.45 97.35%

Table 4: Experiments with update sequences that require nonzero delays

ing, but which rather update switches in batches to en-
sure basic consistency properties. Their approach has been
refined in several followup works, which presented various
more efficient scheduling algorithms for different properties,
including loop-freedom [26, 19], waypoint enforcement [25,
27], and beyond [14, 4]. These approaches have in common
that they rely on clever algorithms developed for the spe-
cific problem. In contrast, we consider a more automated
formal method approach to optimize update schedules, with
a main focus on the timing aspects. In this regard, our
paper is close in spirit to the work by McClurg et al. [29]
who consider the synthesis of update schedules. Their work
is on the synthesis of consistent network updates and they
introduce the command wait that represents a delay that
guarantees a safe flush of all packets that might follow the
outdated forwarding rules. The authors suggest a conserva-
tive computation of such a delay based on the maximum hop
count (similarly as in our Equation 1), however, contrary to
the main focus of our work, they do not further study any
optimization of such delays.

Existing work can be further classified regarding the
assumptions made regarding the synchronization model.
While all approaches above revolve around solutions for
asynchronous communication networks where updates can
take arbitrary time, there is also interesting work on tech-
nologies that assume exact time updates in software-defined
networks [30, 41]. Our work is positioned in-between: we ex-
ploit specific timing behaviors with uncertainty (represented
by time intervals) in order to reduce the update schedule
while providing guarantees on consistency of the update.
To this end, we do not only avoid unnecessary waiting times
but also support concurrent updates whenever safe.

We are not the first to consider the application of Petri
nets in the context of software-defined networking: [36]
presents a model which allows for performance prediction
using queuing Petri nets, [5] studies fault-tolerant aspects,
and [40] security aspects. These works hence have a different
focus. To the best of our knowledge, the only work consid-
ering Petri nets for network updates is the parallel work by
Finkbeiner [16]. However, while their approach relies on a
powerful logic, it is different from ours in that it focuses
on an asynchronous model, and does not account for tim-
ing aspects. Furthermore, the approach also supports the
testing of update schedules, not the synthesis of improved
schedules. Conceptually, the paper is also different from us
in that it relies on classic Petri net theory, while for our use
case, we had to develop a novel extension of the Petri net.

Around the same time as the work by McClurg et al. [29],
Zhou et al. [42] presented a customizable approach to pro-

vide consistency properties in software-defined networks.
The authors develop an uncertainty network model and ap-
ply a greedy algorithm that for each arriving update rule
verifies if it can possibly break the consistency of the net-
work: if this is not the case then the update is applied im-
mediately, otherwise the rule is put on hold and processed at
some later time after some predefined delay. The unresolved
updates are usually handled using some fallback mechanism
(like two-phase update) and the experiments document a
considerable speed up (up to three times) in the duration of
network update. Our work, on the other hand, provides an
exact (provably optimal) solution of minimum switch update
delays for a given update sequence and models a high tim-
ing precision both for the switch updates as well as packet
transmission. We are not aware of other tools that allow to
compute the exact minimum delays between switch updates.

Finally, it remains to point out that there exists much
work on other notions of Petri nets accounting for time, most
notably timed Petri nets [43, 34]. However in these nets, tim-
ing is fixed to transitions, while in our proposed timed-arc
colored Petri nets, timing is related to tokens, which en-
ables us to keep track of time for all (dynamically created)
tokens in the net. As a result, the modelling capabilities
of the two models are incomparable and in particular the
timed Petri net model does not allow us to keep track of the
ages of tokens (representing packets in our application)—a
feature that is essential for modelling of network updates.
The most related model of interval timed colored nets [39]
associates, similarly to our model, tokens with both time
and color infomation. However, the model uses an eager se-
mantics that introduces priorities among transition firings
(transitions with smallest enabling times fire first) whereas
our model uses relative timing and allows for multiple en-
abledness of transitions that is essential for our application
domain. We are not aware of any other work on Petri nets
that combine both timing associated to tokens where arcs
contain timing intervals restricting the ages of tokens they
can consume (a feature essential for modeling of network
updates) together with colored information (that allows us
to account for multiple variants of packets in the network
at the same time). We believe that our Petri net model of
TACPN is of independent interest because other existing ex-
tensions of Petri nets with time and color rely on radically
different semantics.

7. CONCLUSION
Motivated by the emerging more adaptive communication

networks, we presented an automated approach to improve
and speed up network update schedules, while ensuring rig-



orous transient correctness guarantees for a wide range of
properties. Our approach relies on formal methods and in
particular, a novel generalization of Petri nets which sup-
ports reasoning about different timing behaviors. We in-
troduced an efficient algorithm to construct and solve our
timed-arc colored Petri nets, presented an implementation
in a state-of-the-art model checking tool, and reported on
experimental results. For network topologies with up to 16
concurrent swich updates, we were able to reduce the net-
work update time from about a minute to a fraction of a
second and hence to significantly reduce the time of possi-
ble routing irregularities during the network update. The
computation time needed to achieve this gain ranges from
seconds to minutes, which is very reasonable given the high
complexity of the task. Moreover, the network routing is not
affected during the computation of the update delays, and
hence it is only the network update duration that is critical
for the network performance.

We understand our work as a first step and believe that
it opens several interesting directions for future research. In
particular, it will be interesting to generalize the synthesis
algorithm further, supporting the synthesis of arbitrary up-
date schedules from scratch. It will also be interesting to ex-
plore the use of our developed timed-arc colored Petri nets in
other application domains as well: we believe that TACPN
may be of independent interest and of use in other contexts
where different timing behaviors occur, e.g., in transporta-
tion systems. In order to facilitate future research and en-
sure reproducibility, we share our implementation as part of
the open source tool TAPAAL.
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[32] Peter Peréıni, Maciej Kuzniar, Marco Canini, and
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