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ABSTRACT
We consider a fluid model of n × n input-queued switches with as-

sociated fluid-flow costs and derive an optimal scheduling control

policy to an infinite horizon discounted control problem with a

general linear objective function of fluid cost. Our optimal policy

coincides with the cµ-rule in certain parameter domains, but more

generally, takes the form of the solution to a flow maximization

problem. Computational experiments demonstrate the benefits of

our optimal scheduling policy over variants of max-weight sched-

uling and the cµ-rule.

1 INTRODUCTION
Input-queued switch architectures are widely used in modern com-

puter and communication networks. The optimal scheduling con-

trol of these high-speed, low-latency switch networks is critical for

our understanding of fundamental design and performance issues

related to internet routers, cloud computing data centers, and high-

performance computing. A large and rich literature exists around

optimal scheduling in these computer and communication systems.

This includes the extensive study of input-queued switches as an

important mathematical model for a general class of optimal control

problems of broad interest in both theory and practice.

Most of the previous research related to scheduling control in

input-queued switches has focused on throughput optimality. In

particular, the max-weight scheduling policy, first introduced in

[24] for wireless networks and subsequently in [18] specifically

for input-queued switches, is well-known to be throughput op-

timal. The question of delay-optimal scheduling control in such

switch networks, however, is far less clear with much more lim-

ited results. This is due in large part because of the inherent diffi-

culty of establishing delay (or equivalently, via Little’s Law, queue

length) optimality for these types of stochastic systems in general.

Hence, previous research on optimal delay scheduling control in

input-queued switches has focused on heavy-traffic and related

asymptotic regimes; see, e.g., [1, 11, 20–22].

Such previous research includes showing that the max-weight

scheduling policy is asymptotically optimal in heavy traffic for an

objective function of the summation of the squares of the queue

lengths with the assumption of complete resource pooling [23].

Max-weight scheduling was then shown to be optimal in heavy

traffic for an objective function of the summation of the queue
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lengths under the assumption that all the ports are saturated [17].

This was subsequently extended to the case of incompletely sat-

urated ports under the same objective function [16] and then to

the case of general linear objective functions [13]. Nevertheless,

beyond these and related recent results limited to the heavy-traffic

regime, the question of delay-optimal scheduling control in input-

queued switches remains open in general, as does the question of

delay-optimal scheduling under more general objective functions.

In this paper, we seek to gain fundamental insights on optimal

delay-cost scheduling in these stochastic systems by studying a

fluid model of general n × n input-queued switches where each

fluid flow has an associated cost. The objective of the correspond-

ing optimal control problem is to determine the scheduling policy

that minimizes the discounted summation over an infinite horizon

of general linear cost functions of the fluid levels associated with

each queue. Related research has been conducted in the queue-

ing network literature; see, e.g., [2, 3, 7, 15]. In particular, similar

problems have been studied within the context of fluid models of

multiclass queueing networks [2, 3]. These previous studies take

a classical optimal control approach based on exploiting Pontrya-

gin’s Maximum Principle [19], which itself only provides necessary

conditions for optimality, to identify optimal policies. However,

while this framework enables with relative ease the derivation of

optimal policies for fluid models of basic queueing networks, the

situation for input-queued switches is quite different and much

more difficult. Specifically, the highly constrained structure of the

input-queued switch networks requires us to pay special attention

to the feasibility of the optimal control problem.

To address these issues, we implicitly move the capacity con-

straint into the objective and identify the appropriate Lagrangian

multiplier through carefully designed search algorithms. Then, at

any fluid level, we establish that the optimal scheduling policy is ob-

tained through a solution to a flow maximization problem, which is

also shown to be throughput optimal. Our optimal policy coincides

with the cµ-rule in certain parameter domains. These theoretical

results reflect the high complexity nature of input-queued switches,

and are expected to be of interest more broadly than input-queued

switch networks and more broadly than related classes of fluid

models of stochastic networks with constraints.

We observe important differences in the decisions made under

our optimal scheduling control policy in comparison with those

made under a cost-weighted variant of the max-weight schedul-

ing policy and the cµ-rule within the fluid model of general n × n
input-queued switches. It is important to emphasize that our goal

is to determine the optimal solution of the corresponding fluid

control problem, which is at the core of the important scheduling-

decision differences between our optimal policy and those of the

other scheduling policies. Although we show that our flow maxi-

mization solution coincides with the cµ-rule in some regions of the

decision space, we also show that the cµ-rule is not stable under
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certain arrival rates and thus it cannot in general be the optimal

scheduling policy. In contrast to the max-weight scheduling policy

which does not use any arrival rate information, we show that

the optimal policy from our flow maximization solution for the

n × n input-queued switch fluid control problem can depend in

general on the arrival rates, which is consistent with known results

established for the original (non-fluid limit) 2 × 2 input-queued

switch where the optimal policy takes into account the arrival pro-

cesses in some regions of the decision space [12]. The cost-weighted

max-weight scheduling policy has been shown to exhibit optimal

queue-length scaling in the heavy traffic regime [13], suggesting

that the importance of arrival-process information on the queue-

length scaling of the optimal scheduling control policy tends to

diminish asymptotically as the traffic intensity increases.

To further investigate these important differences, we conduct

fluid-model computational experiments with our optimal schedul-

ing policy, themax-weight scheduling policy, and the cµ-rule to gain
additional fundamental insights on various important theoretical

issues with respect to optimal scheduling control in input-queued

switch networks. In comparisons with the max-weight scheduling

policy, we find that our optimal scheduling control policy provides

improvements of at least 10% in most of the experiments, sometimes

rendering improvements of more than 50%. Moreover, the improve-

ments of our optimal policy over max-weight scheduling grow as

the throughput increases. With respect to the cµ-rule, we find that

the comparisons with our optimal scheduling control policy fall

into three different cases: (1) The cµ-rule coincides with the optimal

policy, and thus is fluid-cost optimal; (2) The cµ-rule is unstable (not
throughput optimal), and obviously not fluid-cost optimal; (3) The

cµ-rule is stable, but not fluid-cost optimal. Moreover, the greatest

improvements observed for our optimal policy over stable cµ-rule
instances represent relative performance gaps of more than 70%.

The remainder of this paper is organized as follows. Section 2

presents our mathematical models, for both stochastic processes of

input-queued switch networks and their mean-field limits, together

with our formulation of the optimal scheduling control problems of

interest. Section 3 then provides our analysis and results for optimal

scheduling control and related theoretical properties. The results

of computational experiments are presented in Section 4, followed

by concluding remarks. We refer the reader to [14] for our proofs

and additional technical details and theoretical results.

2 MATHEMATICAL MODELS
2.1 Technical Preliminaries
Let R, R+, R

+
, Z, Z+, and Z

+
respectively denote the sets of real

numbers, non-negative real numbers, positive real numbers, in-

tegers, non-negative integers, and positive integers. For positive

integer n ∈ Z+, we define [n] := {1, 2, . . . ,n} to be the set of all pos-
itive integers less than or equal to n. The blackboard bold typefaces
is used for general sets, e.g., I and J. When the set I is finite, we
represent its cardinality by |I|; e.g., we have |[n]| = n for n ∈ Z+.

We use the bold font to represent vectors, matrices, and real-

valued functions on a finite set. The function µ : I → R, defined
on the finite set I, can be considered as an |I|-dimensional vector

µ = [µ(s) : s ∈ I], where µ(s) is the value of µ at s . We denote byRI

the set of all real-valued functions on I. For finite sets I and J, RI×J

is the set of all real-valued functions from I× J in which an element

A can also be represented by the matrixA = [A(s, ρ) : s ∈ I, ρ ∈ J],
where A(s, ρ) is the value of the function A at (s, ρ) ∈ I × J.

For A ∈ RI×J, η ∈ RJ, and µ ∈ RI, we respectively define

µA ∈ RJ, Aq ∈ RI, and µAη ∈ R by (µA)(ρ) :=
∑
s ∈I µ(s)A(s, ρ),

(Aη)(s) :=
∑
ρ ∈JA(s, ρ)η(ρ), µAη :=

∑
s ∈I

∑
ρ ∈J µ(s)A(s, ρ)η(ρ),

which is similar to matrix-vector multiplication. Forw, µ ∈ RI, we
also definew · µ ∈ R byw · µ :=

∑
s ∈Iw(s)µ(s), which is the same

as the inner-product of two vectors. We denote the 1-norm of a

vector by ∥ · ∥1, namely for µ ∈ RI, ∥µ∥1 :=
∑
s ∈I |µ(s)|. Finally,

we use the sans serif font for random variables and use the bold

sans serif font for random vectors, e.g., Q and Q, respectively.

2.2 Stochastic Models
The input-queued switch of interest consists of n input ports and

n output ports. For each pair (i, j) ∈ J := [n] × [n], packets that
need to be transmitted from the i-th input port to the j-th output

port are stored in a queue indexed by (i, j). We describe below how

the number of packets in a queue (queue length) evolves over time.

Time is slotted by nonnegative integers and the length of queue

ρ ∈ J at the beginning of the t-th time slot is denoted by Qt (ρ).
External packets arrive at each queue according to an exogenous

stochastic process. LetAt (ρ) ∈ Z+ represent the number of arrivals

to queue ρ ∈ J until time t . Assume that {At+1(ρ) − At (ρ) : t ∈
Z+, ρ ∈ J} are independent random variables and that, for fixed

ρ ∈ J, {At+1(ρ) − At (ρ) : t ∈ Z+} are identically distributed

with E[At+1(ρ) − At (ρ)] =: λ(ρ). We refer to the |J|-dimensional

vector λ ∈ [0, 1]J as the arrival rate vector and assume λ lies in the

interior of the capacity region: {λ ∈ [0, 1]J,
∑
i λi j < 1,

∑
j λi j < 1}.

During each time slot, packets in the queues can be simulta-

neously transmitted (or departed from the queues) subject to: (1)

At most one packet can be transmitted from an input port; (2) At

most one packet can be transmitted to an output port. Hence, we

denote the departure of packets from the queues during a time slot

by an n2-dimensional binary vector s = [s(ρ) : ρ ∈ J] such that

s(ρ) = 1 if a packet in queue ρ departs from the queue, and s(ρ) = 0

otherwise. We refer to such s as a basic schedule, and let I denote
the set of all basic schedules: I := {s ∈ {0, 1}J :

∑
i ∈[n] s(i, j) ≤

1,
∑
j ∈[n] s(i, j) ≤ 1,∀i, j ∈ [n]}. Note that I contains the empty

basic schedule s , such that s(i, j) = 0 for all (i, j) ∈ J.
For s ∈ I, let Dt (s) denote the cumulative number of time slots

devoted to basic schedule s until time t . We therefore have ∥Dt ∥1 =∑
s ∈IDt (s) = t and ∥Dt+1∥1 − ∥Dt ∥1 = 1 for every t ∈ Z+.

From the description of arrivals and departures, we can see that

Qt evolves according to the following dynamics Qt = Q0 +At −

DtA, where Q0 = [Q0(ρ) : ρ ∈ J] is the initial queue lengths

and A ∈ {0, 1}I×J is the schedule-queue adjacency matrix such

that A(s, ρ) = s(ρ) for s ∈ I and ρ ∈ J. We refer to a stochastic

process {(Qt ,At ,Dt ) ∈ Z
J
+ × Z

J
+ × Z

I
+ : t ∈ Z+} that satisfies the

above dynamics as a discrete-time stochastic model for input-queued
switches with the (random) initial state Q0 ∈ ZJ+.

2.3 Fluid Models
This section introduces a deterministic process that represents

our fluid models for input-queued switches, describes the scaled

processes of the original stochastic process, and relates them to
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our fluid models. The basic set up and ideas can be found in the

research literature on fluid limit models, especially the papers of

Dai [10] and Dai and Prabhakar [9]. The key concepts concern the

tightness and the measures of stochastic processes, which leads to

the convergence of the subsequences of the scaled processes.

Definition 2.1. An absolutely continuous deterministic process

{(qt ,δt ) ∈ RJ × RI : t ∈ R+} is called a (input-queued switch)
fluid model with initial state q

0
∈ RJ+ and arrival rates λ ∈ [0, 1]J

if the following conditions hold: (FM1) qt = q
0
+ λt − δtA for

t ∈ R+; (FM2) qt ≥ 0 for t ∈ R+; (FM3)
∑
s ∈I δt (s) = t (i.e.,

∥δt ∥1 = t ) and δt ≥ 0 for t ∈ R+; (FM4) For any s ∈ I, δt (s)
is non-decreasing with respect to t . Furthermore, a deterministic

process {µt ∈ R+ : t ∈ R+} is called an (fluid-level) admissible
policy for the input-queued switch if and only if there exists a fluid

model (qt ,δt ) such that µt =
Ûδt for all t ∈ R+ at which Ûδt exists.

Note that, since (qt ,δt ) is absolutely continuous, Ûqt and
Ûδt

exist at almost every t ∈ R+. The following proposition introduces

convenient alternative criteria for a fluid-level admissible policy.

Proposition 2.2. Fix q
0
∈ RJ+ and λ ∈ [0, 1]J. Let {µt ∈ RI+ :

t ∈ R+} be an integrable deterministic process and {qt ∈ RJ :

t ∈ R+} a process satisfying Ûqt = λ − µtA with initial state
q
0
. Then, the following statements are equivalent: (AP1) µt is a

fluid-level admissible policy; (AP2) ∥µt ∥1 = 1 and qt ≥ 0 for all
t ∈ R+; (AP3) ∥µt ∥1 = 1 and µt ∈ U(qt ) for all t ∈ R+, where
U(q) := {µ ∈ [0, 1]I : (µA)(ρ) ≤ λ(ρ) if q(ρ) = 0}. In this case,
(qt ,δt :=

∫ t
0
µt ′dt

′) is the fluid model associated with the fluid-level
admissible policy µt .

2.3.1 Scaled Queueing Processes. Fix index r ∈ Z+ and then let

{(Qr
t ,Ar

t ,Dr
t ) : t ∈ Z+} be a discrete-time stochastic model with

initial state Qr
as described in Section 2.2. We extend this discrete-

time process to a continuous-time process by definingAr
t := (t −

⌊t⌋)(Ar
⌊t ⌋+1 −Ar

⌊t ⌋ ) +A
r
⌊t ⌋ , D

r
t := (t − ⌊t⌋)(Dr

⌊t ⌋+1 −Dr
⌊t ⌋ ) +

Dr
⌊t ⌋ , Q

r
t := (t − ⌊t⌋)(Qr

⌊t ⌋+1 −Qr
⌊t ⌋ ) +Q

r
⌊t ⌋ = Qr +Ar

t −Dr
tA,

where ⌊t⌋ is the largest integer less than or equal to t .

Remark. Processes Qr
t (ρ), A

r
t (ρ) and Dr

t (s) are random func-
tions, and every sample path for (Qr

t ,Ar
t ,Dr

t ) is continuous. We
use the notation ωr to explicitly denote the dependency on the ran-
domness in the r -th system and the notation ω = [ωr

: r ∈ Z+] to
denote the overall randomness. For example, Qr

t (ρ;ω) = Qr
t (ρ;ω

r )

and Qr
t (ω) = Qr

t (ω
r ).

For randomnessω, the scaled r -th system is defined by ( ˆQr
t (ω),

ˆAr
t (ω), ˆDr

t (ω) ) := ( r−1Qr
r t (ω), r−1Ar

r t (ω), r−1Dr
r t (ω) ). We

assume that the initial state of the r -th system satisfies r−1Qr
0
⇒

q
0
, as r → ∞, for a (deterministic) point q

0
∈ RJ+, where the

convergence is understood to be convergence in distribution.

2.3.2 Tightness and Convergence. For a fixed sample pathω, from

the above definitions of the discrete-time departure process and the

extension to its continuous-time process, we have
ˆD0(ρ;ω) = 0 and

ˆDt (ρ;ω) ≤ ∥ ˆDt (ω)∥1 = t so that ˆDr
t (ρ;ω)− ˆDr

t ′(ρ;ω) ≤ (t−t ′),
for any r > 0 and t ≥ t ′ ≥ 0. This implies the tightness of the pro-

cess
ˆDr
t ; see, e.g., [4]. Meanwhile, from the functional strong law

of large numbers, we have limr→∞ sup
0≤t ≤T |Âr

t (ρ;ω)−λ(ρ)t | =

0 almost surely (see, e.g., [6]). We therefore have that, almost

surely, for each sample path ω and any sequence {rk } such that

limk→∞ rk = ∞, there exists a subsequence {rkl } and deterministic

process (qt ,δt ), which is a fluid model in Definition 2.1, such that

( ˆQ
rkl
t (ω), ˆD

rkl
t (ω)) converges to (qt ,δt ) uniformly on all compact

sets as l → ∞.

Remark. The conditions FM1 to FM4 are necessary conditions
for all the fluid limits, and they do not uniquely determine a fluid
limit, even under a fixed admissible scheduling policy. Such a lack
of uniqueness for the fluid limits and its implications for queueing
networks are discussed at length in [5]. For certain special cases, with
extra conditions on the policies, fluid limits can be shown to be unique;
see, e.g., [22] for input-queued switches. Our interest, however, is in
solving optimal scheduling control problems within the context of
the fluid models. With conditions such as FM1 and FM4, fluid limit
results are generally established for converging subsequences; similar
results can be found in [10] for queueing networks.

2.4 Fluid Model Optimal Control Problems
We now formulate the optimal scheduling control problem of inter-

est within the context of the fluid models of input-queue switches.

To this end, we define as follows the total discounted delay cost over

the entire time horizon under a fluid-level admissible policy {µt :

t ∈ R+} with initial state q
0
: c(µt ;q0) :=

∫ ∞

0
e−βtc · qtdt , where

qt is the deterministic function defined in FM1 with δt :=
∫ t
0
µsds

and initial state q
0
, β is the discount factor, and c ∈ (R+)J is the

vector of cost coefficients. Specifically, we seek to find a fluid-level

admissible scheduling policy with the following objective:

Minimize c(µt ;q0) over all admissible policies {µt : t ∈ R+}.

From (AP2) in Proposition 2.2, this control problem can be formu-

lated as

minimize

∫ ∞

0

e−βtc · qtdt

subject to Ûqt = λ − µtA, ∀t ∈ R+,

qt ≥ 0, ∀t ∈ R+, µt ∈ U, ∀t ∈ R+,

(1)

where U = {µ ∈ [0, 1]I : ∥µ∥1 = 1} and the initial state of qt is q0.
In the remainder of this section, we exploit results in optimal

control theory and present necessary and sufficient conditions for

the optimality of Problem (1). As previously noted, the Pontryagin

Maximum Principle [19] typically only provides necessary condi-

tions for optimality, but sufficient conditions can be shown to be

the case for our optimal control problem.

Proposition 2.3. Let q
0
be the initial state of a fluid model. Let

{µ∗t ∈ RI+ : t ∈ R+} be a fluid-level admissible policy, and let
q∗t = q0−λt +

∫ t
0
µ∗t ′Adt

′ be the associated queue length process. As-
sume there exists a continuous process {pt ∈ RJ : t ∈ R+} with piece-
wise continuous Ûpt and a process {ηt ∈ RJ+ : t ∈ R+} such that the fol-
lowing conditions are satisfied: (C1) µ∗t ∈ argmax {µApt : µ ∈ U};
(C2) Ûpt − βpt = c − ηt ; (C3) q

∗
t · ηt = 0, q∗t ≥ 0, ηt ≥ 0; (C4)

lim inft→∞ pt · (q
∗
t − qt ) ≥ 0 for any fluid model (qt ,δt ) with ini-

tial condition q
0
. Then, {µ∗t : t ∈ R+} is a solution to the optimal

control problem (1).
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3 OPTIMAL CONTROL
3.1 Technical Preliminaries
We refer to the stochastic model in Section 2.2 as the pre-limit

model and refer to the fluid model in Section 2.3 as the limit system.

For the pre-limit model, recall that a basic schedule is a collection

of queues from each of which a packet can depart simultaneously

and is represented by a |J|-dimensional binary vector s = [s(ρ) ∈
{0, 1} : ρ ∈ J], where s(ρ) = 1 if and only if ρ is in the collection

composing the basic schedule and J := [n] × [n] denotes the set of
queues. For ρ ∈ J and s ∈ I, with I the set of all basic schedules
defined in Section 2, we use ρ ∈ s if s(ρ) = 1. For a basic schedule

s ∈ I, we define the weight of s by w(s) :=
∑
ρ ∈s c(ρ), where

c ∈ (R+)J is the cost coefficient vector introduced in (1).

While time in the pre-limit system is discrete with queue-length

vector Qt ∈ ZJ+ at time t , time in the limit system is continuous

with the state space of (fluid) queue-length vectors qt ∈ RJ+. From
Proposition 2.2, we define a (fluid-level) schedule by a convex com-

bination of basic schedules and represent it as an |I|-dimensional

vector µ = [µ(s) ∈ [0, 1] : s ∈ I] with ∥µ∥1 = 1, where µ(s) is the
coefficient of schedule s . Furthermore, schedule µ is admissible at
state q ∈ RJ+ if and only if µ ∈ U(q), as defined in Proposition 2.2.

3.2 Critical Thresholds
We now introduce, for each state q ∈ RJ+, a family of linear pro-

gramming problems, indexed by non-negative real numbers, from

which we construct an associated (admissible) schedule. These

schedules are instrumental to the development of the optimal con-

trol algorithms in Section 3.3. For a given state q and a real value

τ ∈ R+, define sets Iτ ⊂ I and Jq ⊂ J by Iτ := {s ∈ I : w(s) ≥ τ }
and Jq := {ρ ∈ J : q(ρ) = 0}, respectively, and define an |Iτ |-

dimensional vector wτ := [w(s) − τ : s ∈ Iτ ] ∈ R
Iτ
+ . Then, for τ

with Iτ , ∅, we formulate the following problem:

max wτ · ν, s.t. νAτ ,q ≤ λq , ν ≥ 0, (Pq,τ )

where Aτ ,q := [A(s, ρ) : s ∈ Iτ , ρ ∈ Jq ] ∈ {0, 1}Iτ ×Jq , λq :=

[λ(ρ) : ρ ∈ Jq ] ∈ [0, 1]Jq , and ν ∈ RIτ is the vector of decision

variables. Note that, if τ = 0, then I0 = I andw0 = Ac .

Remark. The feasible region for Problem (Pq,τ ) is nonempty be-
cause ν = 0 obviously satisfies all constraints. From any feasible
vector ν for Problem (Pq,τ ), if we define µ ∈ RI by µ(s) = ν (s)1Iτ (s),
then we have µ ∈ U(q) due to the constraints in Problem (Pq,τ ). Thus,
when ∥µ∥1 = ∥ν ∥1 = 1, µ is an admissible schedule at state q.

Theorem 3.1. For any state q, there exists a τ = τ (q) ∈ R+ such
that Problem (Pq,τ ) has an optimal solution ν that can be extended
to an admissible schedule at state q; namely, ∥ν ∥1 = 1. We call such
τ a critical threshold of state q.

We next devise a search algorithm for critical thresholds that will

terminate in a finite number of iterations. Due to space limitations,

we refer the reader to [14] for a presentation of Algorithms 1 and

2, together with supporting theoretical results, that are intended

to serve this purpose and that will be used to identify the desired

critical thresholds. (Our Algorithm numbering herein is intended

to maintain consistency with [14].)

3.3 Optimal Control Algorithm
By exploiting the critical threshold for any stateq from the previous

section, we now introduce an optimal control algorithm and show

that it renders an optimal solution to the optimal control problem (1).

Algorithm 4 Optimal Control Algorithm for initial state qt=0
1: Set k = 0, t0 = 0, and q∗

0
= qt=0

2: while tk < ∞ do
3: Let τk be the critical threshold from a combination of Algorithms 1 and 2 with

input q = q∗
tk

4: Find an optimal point νk to Problem (Pq ,τ ) with q = q∗
tk

and τ = τk such

that ∥νk ∥ = 1.

5: Define µ∗ ∈ RI by µ∗(s ) =
{
νk (s ) if s ∈ Iτk
0 otherwise

6: Set

tk+1 = tk

+min

{ qtk (ρ)

(µ∗ A)(ρ) − λ(ρ)
: ρ ∈ J\Jq∗tk

, (µ∗ A)(ρ) − λ(ρ) > 0

}
7: Set µ∗

t = µ∗
for t ∈ [tk , tk+1) and q∗

t = q
∗
tk
+ (t − tk )λ − (t − tk )µ∗A for

t ∈ [tk , tk+1]
8: Set k = k + 1

Proposition 3.2. In Algorithm 4, we have that µ∗t is a fluid-
level admissible policy and q∗t is the continuous process satisfying
Ûq∗t = λ − µ∗t A with initial state qt=0.

An importan mathematical property within the context of our

results is weakly stable, the definition of which is as follows.

Definition 3.3 ([9, Definition 6]). A fluid-level admissible policy

µt is weakly stable if the corresponding fluid queue length process

{qt : t ∈ R+} with initial state q
0
= 0 satisfies qt = 0 for all t ≥ 0.

We then have the following main result on the optimality of our

solution to the optimal control problem, for which we note that the

corresponding optimal control policy is weakly stable.

Theorem 3.4. Assume that the arrival rate vector λ is in the
capacity region. Then, (q∗t , µ

∗
t ) is an optimal solution to problem (1).

3.4 Relationship with cµ-Rule
Given an arrival rate vector λ and initial queue length q

0
such that

λ(i, j) = q0(i, j) = 0 for all i ∈ [n] and j ∈ [n] \ {1}, the n × n input-

queued switch is equivalent to n parallel queues with one server.

The cµ-rule is well-known for this case to be an optimal policy that

minimizes the discounted total cost over an infinite horizon in both

the stochastic and fluid models (see [8] and [3]); and, in this case,

Algorithm 4 follows the cµ-rule in the fluid model.

However, the cµ-rule is not optimal for the n × n input-queued

switch in general. Consider a 3× 3 input-queued switch fluid model

such that λ(i, j) = 0.45 if (i, j) = (1, 1), (1, 2), (2, 1), (2, 3), and zero

otherwise; c(i, j) = 1 if (i, j) = (1, 2), (2, 3), c(i, j) = 0.5 if (i, j) =
(2, 1), c(i, j) = 0.1 if (i, j) = (1, 1), (2, 3), and zero otherwise; q

0
= 0.

Then, according to the cµ-rule, the admissible schedule at q with
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(a) κ = 0.70, Relative Gap is 19% (b) κ = 0.90, Relative Gap is 35% (c) κ = 0.95, Relative Gap is 50%

Figure 1: Performance Comparisons of Total Costs under Optimal Policy (Algorithm 4) and Max-Weight Algorithm

q(1, 2) = q(2, 3) = q(2, 1) = 0 becomes

µ(s) =


0.45 for s such that s(1, 2) = s(2, 3) = 1

0.45 for s such that s(2, 1) = 1

0.10 for s such that s(1, 1) = 1

0 otherwise

.

Hence, the queue lengths for (1, 2), (2, 3) and (2, 1) are maintained at

zero but the queue length for (1, 1) increases with rate 0.45− 0.10 =

0.35, which shows that the cµ-rule is not weakly stable.

On the other hand, according to Theorem 3.6 in [14], Algorithm 4

is weakly stable. In this example, the critical threshold at q
0
= 0 is

τ = 0 and the admissible schedule is

µ∗(s) =


0.45 for s such that s(1, 2) = s(2, 1) = 1

0.45 for s such that s(1, 1) = s(2, 3) = 1

0 otherwise

,

which maintains the system to be empty.

4 COMPUTATIONAL EXPERIMENTS
In this section, we present computational experiments that compare

the performance of our optimal control algorithm with that of the

max-weight scheduling algorithm and the cµ-rule in the fluid model

context. We fix the number of input and output ports to be n ∈ Z+
and fix the throughput κ ∈ (0, 1). For 1 ≤ i, j ≤ n, we randomly

generate the costs c(i, j) ∈ (0, 1) and the arrival rates λ(i, j) ∈ (0, 1)

such thatmax{
∑n
k=1 λ(i,k),

∑n
k=1 λ(k, j) : i, j ∈ [n]} = κ. We also

choose an initial queue length to be an integer between 1 and 100

uniformly at random for each (i, j) ∈ [n] × [n].
With these parameters, we apply Algorithm 4 until we reach the

time T at which the queue length becomes 0 for all queues. During

our experiments, we let t0, t1, . . . , tK denote the epochs at which Al-

gorithm 4 updates the admissible schedule, with t0 = 0 and tK = T .

Then, the total cost

∫ ∞

0
c · qt dt is given by

∑K−1
k=0

∫ tk+1
tk

c · qtdt =∑K−1
k=0 c · (

qtk+1
+qtk
2

)(tk+1 − tk ) because on the interval [tk , tk+1]
the admissible schedule does not change and qt is a linear func-
tion. Note that, even though the objective function in the optimal

control problem (1) has a discount factor β ∈ (0, 1), we set β = 1

for the results of our computational experiments herein because

Algorithm 4 does not depend on β .

Figure 2: Histogram of Relative Gaps for κ = 0.9

While the existence and uniqueness of the fluid limit under

the max-weight scheduling algorithm has been proven (see [9]

and [22]), an explicit formula is not known. Hence, to numerically

compute the max-weight scheduling algorithm in the fluid model,

we partition the interval [0,T ] into slots of size∆t ; then, for time slot

[t ′k , t
′
k + ∆t], we find a basic schedule of the max-weight algorithm

with respect to qtk , say s ∈ I, and use this schedule during that

time slot. In other words, we set qtk+1 (i, j) = max{qtk (i, j) +
(λ(i, j)−s(i, j))∆t, 0} for (i, j) ∈ [n]×[n] and approximately measure

the total cost on the interval [0,T ] by (assuming that t ′K ′ = T )∫ T
0

c · qt dt ≈
∑K ′−1
k=1 c · qt ′k

, which is close to the actual total cost

under the max-weight scheduling algorithm as ∆t → 0 and we

selected ∆t accordingly.
Figure 1 illustrates a representative sample of the total cost over

time on [0,T ] for the 3 × 3 input-queued switch fluid model under

our optimal control policy and the max-weight scheduling policy.

The cost coefficients and the initial queue lengths are set to be the

same in each of these three experiments. We vary the throughput κ,
defined above, across the three experiments (i.e., κ = 0.7, 0.9, 0.95)

while fixing the ratio among the arrival rates. As observed in the fig-

ure, the performance of our optimal policy (Algorithm 4) improves

in comparison with that of the max-weight scheduling algorithm as
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Figure 3: Performance Comparisons of Total Costs under Optimal Policy (Algorithm 4) and cµ-rule

the throughput κ increases. To quantify this performance compari-

son, we calculate the relative gap defined by the difference between

the total costs at time T under the two algorithms divided by the

total cost at time T of the optimal algorithm. The growth in this

relative performance gap as the throughput increases ranges from

19% for κ = 0.7, to 35% for κ = 0.9 and 50% for κ = 0.95.

Figure 2 illustrates a representative sample of the corresponding

relative performance gap results for various combinations of costs,

initial state, and arrival rates under a fixed throughput of κ = 0.9.

We observe that the distribution of the relative gap demonstrates

improved performance of at least 10%, in most cases, under Algo-

rithm 4 in comparison with the max-weight scheduling. The sample

average of the relative performance gap is around 20%.

We also compare the total cost under our optimal policy (Algo-

rithm 4) and the cµ-rule. Figure 3 illustrates a representative sample

of the total cost over time on [0,T ] for the 3 × 3 input-queued

switch fluid model, demonstrating three different types of behavior.

In Figure 3a, the cµ-rule and the optimal algorithm are identical

and provide the same performance. We observe in Figure 3b, how-

ever, that the cµ-rule is unstable and clearly not optimal. Moreover,

even when the cµ-rule is stable, it may not be optimal as shown in

Figure 3c. The highest relative performance improvement of our

optimal policy over instances of the stable cµ-rule is more than 70%.

5 CONCLUSIONS
We studied a fluid model of general n × n input-queued switches

where each fluid flow has an associated cost, and derived an optimal

scheduling control policy under a general linear objective function

based on minimizing discounted fluid cost over an infinite horizon.

We demonstrated that, while in certain parameter domains the opti-

mal policy coincides with the cµ-rule, in general the optimal policy

is determined algorithmically through a constrained flowmaximiza-

tion problem whose parameters, essentially Lagrangian multipliers

of some key network constraints, were in turn identified by another

set of carefully designed algorithms. Computational experiments

within fluid models of input-queued switches demonstrated the

significant benefits of our optimal scheduling policy over variants

of max-weight scheduling and the cµ-rule.
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