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ABSTRACT
We analyze a data-processing system with n clients pro-
ducing jobs which are processed in batches by m parallel
servers; the system throughput critically depends on the
batch size and a corresponding sub-additive speedup func-
tion that arises due to overhead amortization. In prac-
tice, throughput optimization relies on numerical searches
for the optimal batch size which is computationally cum-
bersome. In this paper, we model this system in terms of
a closed queueing network assuming certain forms of ser-
vice speedup; a standard Markovian analysis yields the op-
timal throughput in ω

(
n4
)
time. Our main contribution is a

mean-field model that has a unique, globally attractive sta-
tionary point, derivable in closed form. This point charac-
terizes the asymptotic throughput as a function of the batch
size that can be calculated in O(1) time. Numerical settings
from a large commercial system reveal that this asymptotic
optimum is accurate in practical finite regimes.

1. INTRODUCTION
We consider a closed system where n clients generate jobs

to be processed by m parallel servers. Each client alternates
between being in an active or an inactive state; in the former
it produces a job and in the latter it awaits the response.
Note that each client can have at most one job in the system
as it produces a new job no sooner than its previous one fin-
ished execution. The servers process jobs in batches of size
k; once k clients produce k jobs, these are sent for batch
processing and may have to wait in a central queue if all
servers are busy. All times are assumed to be exponentially
distributed1. In the active state, a client produces a job with
rate λ, the batching step has a rateM , and a batch is served
by one server with rate µ(k); see Fig. 1. This model is repre-
sentative for some real-world data-processing systems such
as databases employing Multi Query Optimization [7, 6, 5].
In addition to the single job type case, we consider a general-
ized model with multiple job types under priority constraints
such as read and write jobs in a database with essentially
different average processing times; see [3] for details.

1We will show that this technically convenient assumption is
valid by fitting the parameters to real-world system traces.
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Figure 1: A closed queueing system with n clients and m
servers. Clients are either active or inactive and produce
jobs at rate λx when x of them are active. The batcher pro-
duces batches of size k at rateM by/kc when y jobs are avail-
able. The service station consists of a single queue and m
parallel servers, each having a service rate µ; with z batches,
the overall batch service rate is µmin(m, z).

Classical literature of closed queueing systems has been
focused on proving the product form property of the steady
state distribution and characterization of such systems [1].
Closest to our setup from Fig. 1 is [2], where the existence of
product form was investigated under service batching. How-
ever, this work does not readily apply to our problem as the
conditional routing probabilities of jobs/batches in our case
is state-dependent due the FCFS nature of the service. Even
by approximating FCFS using random service order, we can-
not directly compute the system throughput due to lack of a
method to derive the corresponding normalizing constant.
The main contribution of this paper is the throughput op-

timization in a closed batching system which requires finding
the optimal batch size. An exact analysis by solving the bal-
ance equations in a corresponding Markov model requires at
least ω

(
n4
)
computational time. Hence, we provide a mean-

field model that yields an exact result in O(1) time in the
asymptotic regime where both n and m are proportionally
scaled. Due to the deterministic nature of the limiting pro-
cess and its globally attractive stationary point, this leads
to a simple optimization problem that yields the asymptoti-
cally optimal batch size either in closed form or numerically.
We demonstrate the practical relevance of our results by

analyzing a large commercial database system where a job
refers to a query, e.g., an SQL string, which can execute read
or write operations. Here, batching involves merging queries
into a new SQL string, whose execution time depends on
many factors such as the operation type. Moreover, the
shared overhead amongst the individual queries leads to a
certain speedup in the batch execution time [5] that is gen-
erally a function of the number of batched jobs k and the
job types.



2. MAIN RESULT
In real-world data-processing systems, the number of clien-

ts served is usually large, making the Markovian approach
computationally infeasible. Hence we adopt a mean-field
approach where the number of servers m scales with the
number of clients n. We assume that the batching step is
instantaneous, i.e., the number of jobs in the batching sta-
tion jumps from (k − 1) to 0 upon the arrival of a new job.
Apart from tractability, this assumption is also motivated
by the fact that the batching step is about 50 times faster
than service in the database used for experiments.
Let X(n)(t) denote the number of active clients in the sys-

tem at time t ≥ 0, implying the number of queries in the
system is n − X(n)(t). Then, (X(n)(t), t ≥ 0) is a Markov
process on {0, 1, . . . , n} and is ergodic by irreducibility and
finiteness of the state space. However, it is difficult to obtain
a closed form solution of the stationary distribution π(n) by
solving π(n)Q(n) = 0 because of the non-linear state depen-
dent rates [3]. An alternative and immediate approach is to
obtain a bound on the system throughput as follows. Under
the stationary distribution the following equality must hold:

λE
[
X(n)

]
= kµ(k)E

[
min

(
m,

⌊
n−X(n)

k

⌋)]
, (1)

implying λE
[
X(n)

]
≤ kµ(k) min

(
m,

n− E
[
X(n)

]
k

)
,

by Jensen’s inequality. Now, the expected throughput of the
system E

[
Θ(n)

]
for a given batch size k is given by the RHS

(and hence the LHS) of (1), which gives

E
[
Θ(n)

]
≤ min

(
kµ(k)m,

nλµ(k)

λ+ µ(k)

)
. (2)

Note that we dropped the dependency on k in Θ(n) for
brevity. Next we show that the bound in (2) is asymptoti-
cally tight as n,m → ∞ with m = αn for some α > 0. To
this end, we consider the process (w(n)(t) := X(n)(t)/n, t ≥
0) which denotes the fraction of active clients and we show
that it converges to a deterministic limit with a unique fixed
point. Note that (w(n)(t), t ≥ 0) is a density dependent jump
Markov process [4] with rates

q(n)(w → w − 1/n) = nλw

q(n)(w → w + k/n) = nµ(k) min

(
α,

1

n

⌊
n− nw

k

⌋)
.

The next theorem contains our main result:
Theorem 1. (i) If w(n)(0) → w0 ∈ [0, 1] as n → ∞ in

probability, then we have
sup

0≤t≤T
‖w(n)(t)− w(t)‖ → 0

in probability as n → ∞, where (w(t), t ≥ 0) is the
unique solution of the following ODE:

ẇ(t) = f(w(t)), w(0) = w0,

with f(w) = kµ(k) min

(
α,

1− w
k

)
− λw, w ∈ [0, 1] .

(ii) For any w0 ∈ [0, 1], we have w(t) → w∗ as t → ∞,
where w∗ is the unique solution of f(w∗) = 0, i.e.,

w∗ = min

(
µ(k)

λ+ µ(k)
,
αkµ(k)

λ

)
(iii) The sequence of stationary measures π(n)

w of the process
(w(n)(t), t ≥ 0) converges weakly to δw∗ as n→∞.
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(a) n = 100 clients
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(b) n = 300 clients

Figure 2: Experimental evaluation: The observed optimal
batch sizes k∗ vs. the model estimates with increasing num-
ber of servers m. The system receives only read jobs and
the comparison is for different number of clients n. Exact
represents standard CTMC analysis. The optimal batch size
decreases with higher number of servers due to server idling.

Details of the proof can be found in [3] where a similar
result for the case with multiple job types has also been
derived. The above theorem implies the weaker result that

lim
n→∞

lim
t→∞

E
[
w(n)(t)

]
= lim

t→∞
lim

n→∞
E
[
w(n)(t)

]
= w∗.

Equivalently, we have the convergence of the normalized
throughput: Θ(n)/n→ λw∗ as n→∞. The optimal asymp-
totic throughput follows by maximizing the fraction of active
clients w∗ over the batch size k as

k∗ = max
k

min

(
µ(k)

λ+ µ(k)
,
αkµ(k)

λ

)
. (3)

Assuming that µ(·) takes a subadditive form, we estimate
it by probing batch service times for a fraction of possible
batch sizes. Thus k∗ can be found by solving (3) with a
calculation time that is independent of the system size n.
Fig. 2 shows the validity of the models for read jobs and
for different system sizes. Comprehensive evaluation results
can be found in [3].
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