
Load balancing, redundancy, and multi type
job and server systems

Urtzi Ayesta

CNRS & Ikerbasque-Univ. Basque Country

Questions/Remarks welcome at : urtzi.ayesta@irit.fr

IFIP Performance 2020, 2/11/2020

0 / 76

Based on:

joint work with:

E. Anton, T. Bodas, J.L. Dorsman, M. Jonckheere,
I.M. Verloop

and many other papers by:

Adan, Bonald, Busic, Comte, Gardner,
Harchol-Balter, Hellemans, Hyytiä, Krzesinski,

Mairesse, Moyal, Perry, Righter, Scheller Wolf, van
Houdt, Visschers, Weiss

Animations by T. Bodas (Tikz !)

1 / 76

Load balancing

µ1

∧

µ2

∧

∧

. µN

∧

Exploit variability in the workload in different queues !
∧

Very active research domain: JSQ, Power of d , Pull-Push based
approaches, Jobs with multiple tasks, etc.

=⇒ analysis often approximate or in limiting regimes

2 / 76

Load balancing

µ1

∧

µ2

∧

∧

. µN

∧

Exploit variability in the workload in different queues !
∧

Very active research domain: JSQ, Power of d , Pull-Push based
approaches, Jobs with multiple tasks, etc.

=⇒ analysis often approximate or in limiting regimes

2 / 76

Product forms in load balancing systems

• Markovian queues: Queues that can be modeled as a Markov chain

Poisson arrival rates
Exponential service requirements

• Goal: Characterize stationary distribution of Markov chain

Product form ⇒ term1 x term2 x . . . termn

Jackson’s 1963 paper on product form queues was considered among
Ten Most Influential Titles of Management Sciences First Fifty Years

• Key Idea: Relate load balancing systems to a central queue architecture

3 / 76

Product forms in load balancing systems

• Markovian queues: Queues that can be modeled as a Markov chain

Poisson arrival rates
Exponential service requirements

• Goal: Characterize stationary distribution of Markov chain

Product form ⇒ term1 x term2 x . . . termn

Jackson’s 1963 paper on product form queues was considered among
Ten Most Influential Titles of Management Sciences First Fifty Years

• Key Idea: Relate load balancing systems to a central queue architecture

3 / 76

Product forms in load balancing systems

• Markovian queues: Queues that can be modeled as a Markov chain

Poisson arrival rates
Exponential service requirements

• Goal: Characterize stationary distribution of Markov chain

Product form ⇒ term1 x term2 x . . . termn

Jackson’s 1963 paper on product form queues was considered among
Ten Most Influential Titles of Management Sciences First Fifty Years

• Key Idea: Relate load balancing systems to a central queue architecture

3 / 76

Product forms in load balancing systems

• Markovian queues: Queues that can be modeled as a Markov chain

Poisson arrival rates
Exponential service requirements

• Goal: Characterize stationary distribution of Markov chain

Product form

⇒ term1 x term2 x . . . termn

Jackson’s 1963 paper on product form queues was considered among
Ten Most Influential Titles of Management Sciences First Fifty Years

• Key Idea: Relate load balancing systems to a central queue architecture

3 / 76

Product forms in load balancing systems

• Markovian queues: Queues that can be modeled as a Markov chain

Poisson arrival rates
Exponential service requirements

• Goal: Characterize stationary distribution of Markov chain

Product form ⇒ term1 x term2 x . . . termn

Jackson’s 1963 paper on product form queues was considered among
Ten Most Influential Titles of Management Sciences First Fifty Years

• Key Idea: Relate load balancing systems to a central queue architecture

3 / 76

Product forms in load balancing systems

• Markovian queues: Queues that can be modeled as a Markov chain

Poisson arrival rates
Exponential service requirements

• Goal: Characterize stationary distribution of Markov chain

Product form ⇒ term1 x term2 x . . . termn

Jackson’s 1963 paper on product form queues was considered among
Ten Most Influential Titles of Management Sciences First Fifty Years

• Key Idea: Relate load balancing systems to a central queue architecture

3 / 76

Product forms in load balancing systems

• Markovian queues: Queues that can be modeled as a Markov chain

Poisson arrival rates
Exponential service requirements

• Goal: Characterize stationary distribution of Markov chain

Product form ⇒ term1 x term2 x . . . termn

Jackson’s 1963 paper on product form queues was considered among
Ten Most Influential Titles of Management Sciences First Fifty Years

• Key Idea: Relate load balancing systems to a central queue architecture

3 / 76

Outline

I Redundancy
I Central Queue Architecture
I Order Independent Descriptor

I Redundancy and cancel on complete
I Aggregated State Descriptor

I Redundancy and cancel on start
I Generalizations:

I Token-based framework
I Generalized Order Independent

I Impact of assumptions: scheduling and independence

4 / 76

What is redundancy ?

Central idea: create several copies of the same job and use
them to minimize latency !

µ1

∧

µ2

∧

∧

. µN

∧

Exploit variability in the workload in different queues !
∧

5 / 76

What is redundancy ?

Central idea: create several copies of the same job and use
them to minimize latency !

µ1

∧

∧

µ2

∧

∧

. µN

∧

∧
Exploit variability in the workload in different queues !

5 / 76

What is redundancy ?

Central idea: create several copies of the same job and use
them to minimize latency !

µ1

∧

µ2

∧

∧

. µN

∧

Exploit variability in the workload in different queues !
∧∧

5 / 76

What is redundancy ?

Central idea: create several copies of the same job and use
them to minimize latency !

µ1

∧

∧

µ2

∧

∧

. µN

∧

∧

∧∧

Exploit variability in the workload in different queues !

In practice deployed in DNS queries, search engines, Youtube,
Mapreduce

5 / 76

What is redundancy ?

Central idea: create several copies of the same job and use
them to minimize latency !

µ1

∧

∧

µ2

∧

∧

. µN

∧

∧

∧∧
Exploit variability in the workload in different queues !

In practice deployed in DNS queries, search engines, Youtube,
Mapreduce

5 / 76

When to cancel the redundant copy ?

A supermarket example

µ1

∧

∧

µ2

∧

∧

. µN

∧

∧

Cancel on start of service (c.o.s. model)

6 / 76

When to cancel the redundant copy ?

A supermarket example

µ1

∧

∧

µ2

∧

∧

. µN

∧

Cancel on start of service (c.o.s. model)

6 / 76

When to cancel the redundant copy ?

A supermarket example

µ1

∧

∧
×

µ2

∧

∧

. µN

∧

Cancel on start of service (c.o.s. model)

6 / 76

When to cancel the redundant copy ?

A supermarket example

µ1

∧

∧
×

µ2

∧

∧

. µN

∧

Cancel on start of service (c.o.s. model)

6 / 76

When to cancel the redundant copy ?

The cancel-on-complete variant

µ1

∧

∧

µ2

∧

∧

. µN

∧

∧

Cancel on start of service (c.o.s. model)

7 / 76

When to cancel the redundant copy ?

The cancel-on-complete variant

µ1

∧

∧

µ2

∧

∧

. µN

∧

Cancel on start of service (c.o.s. model)

7 / 76

When to cancel the redundant copy ?

The cancel-on-complete variant

µ1

∧

µ2

∧

∧

. µN

∧

Cancel on completion of service(c.o.c. model)

7 / 76

When to cancel the redundant copy ?

The cancel-on-complete variant

µ1
∧

µ2

∧

∧

. µN

∧

Cancel on completion of service(c.o.c. model)

7 / 76

When to cancel the redundant copy ?

The cancel-on-complete variant

µ1
∧

µ2

∧

∧

. µN

∧
×

Cancel on completion of service (c.o.c. model)

7 / 76

When to cancel the redundant copy ?

The cancel-on-complete variant

µ1
∧

µ2

∧

∧

. µN

∧
×

Cancel on completion of service (c.o.c. model)

7 / 76

c .o.c . and central queue

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

Gardner et al. QUESTA 2016

8 / 76

c .o.c . and central queue

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

Gardner et al. QUESTA 2016

8 / 76

c .o.c . and central queue

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

Gardner et al. QUESTA 2016

8 / 76

c .o.c . and central queue

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧

∧

∧ ∧ ∧

Gardner et al. QUESTA 2016

8 / 76

c .o.c . and central queue

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

Gardner et al. QUESTA 2016

8 / 76

c .o.c . and central queue

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

Gardner et al. QUESTA 2016

8 / 76

c .o.s. and central queue
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

9 / 76

c .o.s. and central queue
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

9 / 76

c .o.s. and central queue
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

9 / 76

c .o.s. and central queue
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

9 / 76

c .o.s. and central queue
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

9 / 76

c .o.s. and central queue
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

9 / 76

c .o.s. and central queue
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

9 / 76

c .o.s. and central queue
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

9 / 76

Outline

I Redundancy
I Central Queue Architecture
I Order Independent Descriptor

I Redundancy and cancel on complete
I Aggregated State Descriptor

I Redundancy and cancel on start
I Generalizations:

I Token-based framework
I Generalized Order Independent

I Impact of assumptions: scheduling and independence

10 / 76

Central Queue

State descriptors:
I Job’s point of view:

c(n) = (c1, . . . , cn)
I Server’s point of view:

s = (n1,M1, . . . , ni ,Mi)

11 / 76

Order Independent Queues1

Classes i = 1, . . . ,N.
Si set of servers that can process class-i
Service is FCFS

State descriptor: c(n) = (c1, . . . , cn).

µ(c(n)) =
∑

s∈
⋃n

k=1 Sck

µs

µ(c1, . . . , ck)− µ(c1, . . . , ck−1) =
∑

s∈Sck \
⋃k−1

l=1 Scl

µs

1A. Krzesinski, Order independent queues, in ”Queueing Networks: a
fundamental approach”, Eds: R. Boucherie, N. van Dijk, 2011.

12 / 76

Order Independent Queues1

Classes i = 1, . . . ,N.
Si set of servers that can process class-i
Service is FCFS

State descriptor: c(n) = (c1, . . . , cn).

µ(c(n)) =
∑

s∈
⋃n

k=1 Sck

µs

µ(c1, . . . , ck)− µ(c1, . . . , ck−1) =
∑

s∈Sck \
⋃k−1

l=1 Scl

µs

1A. Krzesinski, Order independent queues, in ”Queueing Networks: a
fundamental approach”, Eds: R. Boucherie, N. van Dijk, 2011.

12 / 76

Order Independent Queues (example)2

State c(6) = (1, 2, 3, 2, 4, 1)

µ(c(6)) = µ1 +µ2 +µ3 +µ4

µ(1, 2)− µ(1) = µ3

2From Gardner and Righter’s APS tutorial:
https://kgardner.people.amherst.edu/

13 / 76

https://kgardner.people.amherst.edu/

Order Independent Queues (example)2

State c(6) = (1, 2, 3, 2, 4, 1)

µ(c(6)) = µ1 +µ2 +µ3 +µ4

µ(1, 2)− µ(1) = µ3

2From Gardner and Righter’s APS tutorial:
https://kgardner.people.amherst.edu/

13 / 76

https://kgardner.people.amherst.edu/

OI queues

Key OI properties:
I For k-th job, its service rate µ(c1, . . . , ck)− µ(c1, . . . , ck−1)

can only depend on what lies ahead.
I µ(c1, . . . , cn) = µ(cσ(1), . . . , cσ(n))

: Theorem: Given OI properties, the queue is quasi-reversible and
the stationary distribution is:

π(c) = π(∅)
n∏

k=1

λck

µ(c1, . . . , ck)

14 / 76

OI queues

Key OI properties:
I For k-th job, its service rate µ(c1, . . . , ck)− µ(c1, . . . , ck−1)

can only depend on what lies ahead.
I µ(c1, . . . , cn) = µ(cσ(1), . . . , cσ(n))

: Theorem: Given OI properties, the queue is quasi-reversible and
the stationary distribution is:

π(c) = π(∅)
n∏

k=1

λck

µ(c1, . . . , ck)

14 / 76

Order Independent Queues (example)

State c(6) = (1, 2, 3, 2, 4, 1)

π(c(6)) = π(∅)
(
λ1
µ1,2

)(
λ2
µ1,2,3

)
(

λ3
µ1,2,3

)(
λ2
µ1,2,3

)(
λ4
µ

)(
λ1
µ

)

15 / 76

Sketch Proof of OI

Distribution satisfies partial balance equations:

rate out of c(n) due to departure = rate into c(n) due to
arrival

rate out of c(n) due to class c arrival = rate into c(n)
due to class c departure

Quasi reversible =⇒ Networks of queues have product form
stationary distribution

π(∅) can be computed recursively by removing a server s and all
classes compatible with that server3

3T. Bonald, C. Comte, F Mathieu, Performance of Balanced Fairness in
Resource Pools: A Recursive Approach, Sigmetrics 2017

16 / 76

Sketch Proof of OI

Distribution satisfies partial balance equations:

rate out of c(n) due to departure = rate into c(n) due to
arrival

rate out of c(n) due to class c arrival = rate into c(n)
due to class c departure

Quasi reversible =⇒ Networks of queues have product form
stationary distribution

π(∅) can be computed recursively by removing a server s and all
classes compatible with that server3

3T. Bonald, C. Comte, F Mathieu, Performance of Balanced Fairness in
Resource Pools: A Recursive Approach, Sigmetrics 2017

16 / 76

Sketch Proof of OI

Distribution satisfies partial balance equations:

rate out of c(n) due to departure = rate into c(n) due to
arrival

rate out of c(n) due to class c arrival = rate into c(n)
due to class c departure

Quasi reversible =⇒ Networks of queues have product form
stationary distribution

π(∅) can be computed recursively by removing a server s and all
classes compatible with that server3

3T. Bonald, C. Comte, F Mathieu, Performance of Balanced Fairness in
Resource Pools: A Recursive Approach, Sigmetrics 2017

16 / 76

Redundancy with c .o.c . is OI

µ1

∧

µ2

∧

∧

. µN

∧

µ(c1, . . . , cn) = sum of rates serving these classes

µ(c1, . . . , cn)− µ(c1, . . . , cn−1) = sum of rates of servers available
to n class jobs

Steady-state distribution is product form!

Key assumption: service time of copies independent!

17 / 76

Redundancy with c .o.c . is OI

µ1

∧

µ2

∧

∧

. µN

∧

µ(c1, . . . , cn) = sum of rates serving these classes

µ(c1, . . . , cn)− µ(c1, . . . , cn−1) = sum of rates of servers available
to n class jobs

Steady-state distribution is product form!

Key assumption: service time of copies independent!

17 / 76

Redundancy with c .o.c . is OI

µ1

∧

µ2

∧

∧

. µN

∧

µ(c1, . . . , cn) = sum of rates serving these classes

µ(c1, . . . , cn)− µ(c1, . . . , cn−1) = sum of rates of servers available
to n class jobs

Steady-state distribution is product form!

Key assumption: service time of copies independent!

17 / 76

c .o.c . and central queue

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

Gardner et al. QUESTA 2016

18 / 76

c .o.c . and central queue

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

Gardner et al. QUESTA 2016

18 / 76

c .o.c . and central queue

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

Gardner et al. QUESTA 2016

18 / 76

c .o.c . and central queue

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧

∧

∧ ∧ ∧

Gardner et al. QUESTA 2016

18 / 76

c .o.c . and central queue

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

Gardner et al. QUESTA 2016

18 / 76

c .o.c . and central queue

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

Gardner et al. QUESTA 2016

18 / 76

Performance Evaluation of Redundancy with c .o.c .

I Assume particular model: W, N etc.

I Redundancy-d model4

4Gardner et al, Redundancy-d: The power of d choices for redundancy, OR
2017

19 / 76

redundancy-d with c .o.c .

µ µ µ . . . µ

λ

d copies

I N homogeneous servers with FIFO discipline
I Jobs arrivals are Poisson with rate λ
I Jobs have exponential service requirement
I Each arrival chooses d servers at random
I i.i.d. redundant copies for a job placed at d servers

20 / 76

redundancy-d with c .o.c .

µ µ µ . . . µ

λ

d copies

I N homogeneous servers with FIFO discipline
I Jobs arrivals are Poisson with rate λ
I Jobs have exponential service requirement
I Each arrival chooses d servers at random
I i.i.d. redundant copies for a job placed at d servers

20 / 76

redundancy-d with c .o.c .

µ µ µ . . . µ

∧
λ

(N
d)

∧
λ

(N
d)

∧
λ

(N
d)

d copies

I A special case of the generic multiclass model
I There are

(N
d
)

classes
I Each class has an arrival rate of λ

(N
d)

20 / 76

Performance Measures

Mean Delay

E(T coc) =
k∑

i=d

1

kµ(k−1
d−1)

(i−1
d−1)
− kλ

Mean-field limit5

P(T coc > t) =
(1
ρ+ (1− ρ)etµ(d−1)

) α
α−1

5M. Bramson, Yi Lu, B. Prabhakar, Randomized load balancing with
general service time distributions. SIGMETRICS 2010: 275-286

21 / 76

Outline

I Redundancy
I Central Queue Architecture
I Order Independent Descriptor

I Redundancy and cancel on complete
I Aggregated State Descriptor

I Redundancy and cancel on start
I Generalizations:

I Token-based framework
I Generalized Order Independent

I Impact of assumptions: scheduling and independence

22 / 76

Redundancy c .o.s. is not OI
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(cn, . . . , c1) no product form!

23 / 76

Multi-type job and multi-type servers6

I Markovian descriptor of (aggregated) form
s = (ni ,Mi , . . . , nd ,Md , . . . ,M1)

I If i servers are busy, then departure rate is iµ
I Assignment rule determines server in case multiple compatible

servers are available

6Visschers, Adan, Weiss, A product form solution to a system with
multi-type jobs and multi-type servers, Queueing Systems, 2012. 24 / 76

Multi-type job and multi-type servers6

I Markovian descriptor of (aggregated) form
s = (ni ,Mi , . . . , nd ,Md , . . . ,M1)

I If i servers are busy, then departure rate is iµ
I Assignment rule determines server in case multiple compatible

servers are available
6Visschers, Adan, Weiss, A product form solution to a system with

multi-type jobs and multi-type servers, Queueing Systems, 2012. 24 / 76

Multi-type job and multi-type servers (cont.)

Key results: Existence of assignment rule, stability condition,
characterization of steady-state distribution

Caveat: No efficient way to calculate π(0)

Results of similar nature with ALIS7

7Adan, Weiss, A skill based parallel service system under FCFS-ALIS:
steady state, overloads, and abandonments Stochastic Systems,
INFORMS, 2014, 4, 250-299

25 / 76

Multi-type job and multi-type servers (cont.)

Key results: Existence of assignment rule, stability condition,
characterization of steady-state distribution

Caveat: No efficient way to calculate π(0)

Results of similar nature with ALIS7

7Adan, Weiss, A skill based parallel service system under FCFS-ALIS:
steady state, overloads, and abandonments Stochastic Systems,
INFORMS, 2014, 4, 250-299

25 / 76

redundancy-d with c .o.s. (example)
N = 4 and d = 3.
Uniform assignment satisfies assignment rule!

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(m2,m3,m4, 2,m1)

(M1, . . . ,Md , nd ,Md+1, . . . ,Mi , ni)

26 / 76

redundancy-d with c .o.s. (example)
N = 4 and d = 3.
Uniform assignment satisfies assignment rule!

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(m2,m3,m4, 2,m1)

(M1, . . . ,Md , nd ,Md+1, . . . ,Mi , ni)

26 / 76

redundancy-d with c .o.s. (example)
N = 4 and d = 3.
Uniform assignment satisfies assignment rule!

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(m2,m3,m4, 2,m1)

(M1, . . . ,Md , nd ,Md+1, . . . ,Mi , ni)
26 / 76

redundancy-d with c .o.s. – results

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(m1, 2,m4,m3,m2)

(ni ,Mi , . . . ,Md+1, nd ,Md , . . . ,M1)

For any state s = (ni ,Mi , . . . ,Md+1, nd ,Md , . . . ,M1), we have

π(s) = ri
ni . . . rd

nd
∏i

j=1 Gj(K , d)π(0)
i!µi → product form

27 / 76

redundancy-d with c .o.s. – results

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(m1, 2,m4,m3,m2)

(ni ,Mi , . . . ,Md+1, nd ,Md , . . . ,M1)

For any state s = (ni ,Mi , . . . ,Md+1, nd ,Md , . . . ,M1), we have

π(s) = ri
ni . . . rd

nd
∏i

j=1 Gj(K , d)π(0)
i!µi → product form

27 / 76

redundancy-d with c .o.s. – results8

π(s) = ri
ni . . . rd

nd
∏i

j=1 Gj(K , d)π(0)
i!µi

With a bit of algebra, and using the form of π(s), we obtain
I π(0), the normalizing constant
I p(i), probability of i busy servers
I The P.G.F. of the number of waiting jobs in the system
I E (N) the expected number of jobs in the system

8A., Bodas, Verloop, On a unifying product form framework for
redundancy models, Performance Evaluation, 2018

28 / 76

Comparing c .o.s. and c .o.c .

If d = K, c.o.c. is equivalent to an M/M/1 with rate µK
If d = K, c.o.s. is equivalent to an M/M/K

I What without i.i.d. assumption?

d = K , c.o.c. =⇒ single server with rate µ

29 / 76

Comparing c .o.s. and c .o.c .

If d = K, c.o.c. is equivalent to an M/M/1 with rate µK
If d = K, c.o.s. is equivalent to an M/M/K

I What without i.i.d. assumption?

d = K , c.o.c. =⇒ single server with rate µ

29 / 76

Performance comparison between c .o.s. and c .o.c .

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30 / 76

Sample path arguments
N = 4 and d = 3

redundancy-d with c.o.s. JSW-d

µ

m1
µ

m1
µ

m2

∧

µ

m2

∧

µ

m3
µ

m4
µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

∧ ∧∧ ∧

∧ ∧ ∧ ∧

31 / 76

Sample path arguments
N = 4 and d = 3

redundancy-d with c.o.s. JSW-d

µ

m1
µ

m1
µ

m2

∧

µ

m2

∧

µ

m3
µ

m4
µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

∧ ∧

∧ ∧

∧ ∧ ∧ ∧

31 / 76

Sample path arguments
N = 4 and d = 3

redundancy-d with c.o.s. JSW-d

µ

m1
µ

m1
µ

m2

∧

µ

m2

∧

µ

m3
µ

m4
µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

∧ ∧∧ ∧

∧ ∧ ∧ ∧

31 / 76

Sample path arguments
N = 4 and d = 3

redundancy-d with c.o.s. JSW-d

µ

m1
µ

m1
µ

m2

∧

µ

m2

∧

µ

m3
µ

m4
µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

∧ ∧∧ ∧

∧ ∧ ∧

∧

31 / 76

Sample path arguments
N = 4 and d = 3

redundancy-d with c.o.s. JSW-d

µ

m1
µ

m1
µ

m2

∧

µ

m2

∧

µ

m3
µ

m4
µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

∧ ∧∧ ∧

∧ ∧ ∧ ∧

31 / 76

Sample path coupling

redundancy-d with c.o.s. JSW-d

µ

m1
µ

m1
µ

m2

∧

µ

m2

∧

µ

m3
µ

m4
µ

m3
µ

m4

∧
λ
3

{1,3,4}

∧
λ
3

{1,2,3}

∧
λ
3

{2,3,4}

∧
λ
3

{1,3,4}

∧
λ
3

{1,2,3}

∧
λ
3

{2,3,4}

∧ ∧∧ ∧

Jobs in the two system depart at the same server !

32 / 76

Equivalence with JSW(d)9

Proposition
For any given sample-path realization, a given job will be served
under both JSW(d) and redundancy-d with c.o.s. in the same
server.

We now know π(0), p(i), P.G.F for the number of waiting
jobs and E (N) for JSW-d through the analysis of Redundancy
c.o.s.

9A., Bodas, Verloop, On a unifying product form framework for
redundancy models, Performance Evaluation, 2018

33 / 76

Redundancy with c.o.s. in mean-field10

P(T > t) =
(
λd + (1− λd)et(d−1)

) 1
d−1

E(T cos) =
∞∑

n=0

λdn

1 + n(d − 1)

In the mean-field limit:

E(T cos) ≥ E(T coc)

10T. Hellemans, B. van Houdt, On the power-of-d-choices with least loaded
server selection, Sigmetrics 2018

34 / 76

Redundancy with c.o.s. in mean-field10

P(T > t) =
(
λd + (1− λd)et(d−1)

) 1
d−1

E(T cos) =
∞∑

n=0

λdn

1 + n(d − 1)

In the mean-field limit:

E(T cos) ≥ E(T coc)

10T. Hellemans, B. van Houdt, On the power-of-d-choices with least loaded
server selection, Sigmetrics 2018

34 / 76

Outline

I Redundancy
I Central Queue Architecture
I Order Independent Descriptor

I Redundancy and cancel on complete
I Aggregated State Descriptor

I Redundancy and cancel on start
I Generalizations:

I Token-based framework
I Generalized Order Independent

I Impact of assumptions: scheduling and independence

35 / 76

Token based framework11

I Multiclass jobs and tokens for service
I Product form stationary distribution
I Subsumes OI and Visschers et al., and more

11A., Bodas, Dorsman, Verloop, A token-based central queue with
order-independent service rates , to appear in OR

36 / 76

A token based central queue

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK

• Only jobs with tokens are served

• There are L job classes

λ1 λ2 . . . λL

• Poisson arrival rate λi for class i

• A compatibility graph (arbitrary)

tK t1, tK t2
• Features of token based queue
− Token assignment

− Releasing a token

− Token service rate
− State space

37 / 76

A token based central queue

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK

• Only jobs with tokens are served

• There are L job classes

λ1 λ2 . . . λL

• Poisson arrival rate λi for class i

• A compatibility graph (arbitrary)

tK t1, tK t2
• Features of token based queue
− Token assignment

− Releasing a token

− Token service rate
− State space

37 / 76

A token based central queue

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK

• Only jobs with tokens are served

• There are L job classes

λ1 λ2 . . . λL

• Poisson arrival rate λi for class i

• A compatibility graph (arbitrary)

tK t1, tK t2
• Features of token based queue
− Token assignment

− Releasing a token

− Token service rate
− State space

37 / 76

A token based central queue

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK

• Only jobs with tokens are served

• There are L job classes

λ1 λ2 . . . λL

• Poisson arrival rate λi for class i

• A compatibility graph (arbitrary)

tK t1, tK t2
• Features of token based queue
− Token assignment

− Releasing a token

− Token service rate
− State space

37 / 76

A token based central queue

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK

• Only jobs with tokens are served

• There are L job classes

λ1 λ2 . . . λL

• Poisson arrival rate λi for class i

• A compatibility graph (arbitrary)

tK t1, tK t2
• Features of token based queue
− Token assignment

− Releasing a token

− Token service rate
− State space

37 / 76

A token based central queue

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK

• Only jobs with tokens are served

• There are L job classes

λ1 λ2 . . . λL

• Poisson arrival rate λi for class i

• A compatibility graph (arbitrary)

tK t1, tK t2

• Features of token based queue
− Token assignment

− Releasing a token

− Token service rate
− State space

37 / 76

A token based central queue

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK

• Only jobs with tokens are served

• There are L job classes

λ1 λ2 . . . λL

• Poisson arrival rate λi for class i

• A compatibility graph (arbitrary)

tK t1, tK t2
• Features of token based queue
− Token assignment

− Releasing a token

− Token service rate
− State space

37 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK • Only jobs with tokens are served

• A set C of multiclass jobs

λ1 λ2 . . . λL

• Poisson arrival rate λc for c ∈ C

• A compatibility graph (arbitrary)
tK t1, tK t2

• An arriving job must pick a
compatible token if available

t2

t2

• Job with no feasible token will
wait in the queue

• A job can claim only one
compatible token

• An assignment rule specifies the
tie-breaking rule

tK tKt1

t1

38 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK • Only jobs with tokens are served

• A set C of multiclass jobs

λ1 λ2 . . . λL

• Poisson arrival rate λc for c ∈ C

• A compatibility graph (arbitrary)
tK t1, tK t2

• An arriving job must pick a
compatible token if available

t2

t2

• Job with no feasible token will
wait in the queue

• A job can claim only one
compatible token

• An assignment rule specifies the
tie-breaking rule

tK tKt1

t1

38 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK • Only jobs with tokens are served

• A set C of multiclass jobs

λ1 λ2 . . . λL

• Poisson arrival rate λc for c ∈ C

• A compatibility graph (arbitrary)
tK t1, tK t2

• An arriving job must pick a
compatible token if available

t2

t2

• Job with no feasible token will
wait in the queue

• A job can claim only one
compatible token

• An assignment rule specifies the
tie-breaking rule

tK tKt1

t1

38 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK • Only jobs with tokens are served

• A set C of multiclass jobs

λ1 λ2 . . . λL

• Poisson arrival rate λc for c ∈ C

• A compatibility graph (arbitrary)
tK t1, tK t2

• An arriving job must pick a
compatible token if available

t2

t2

• Job with no feasible token will
wait in the queue

• A job can claim only one
compatible token

• An assignment rule specifies the
tie-breaking rule

tK tKt1

t1

38 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK • Only jobs with tokens are served

• A set C of multiclass jobs

λ1 λ2 . . . λL

• Poisson arrival rate λc for c ∈ C

• A compatibility graph (arbitrary)
tK t1, tK t2

• An arriving job must pick a
compatible token if available

t2

t2

• Job with no feasible token will
wait in the queue

• A job can claim only one
compatible token

• An assignment rule specifies the
tie-breaking rule

tK tKt1

t1

38 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK • Only jobs with tokens are served

• A set C of multiclass jobs

λ1 λ2 . . . λL

• Poisson arrival rate λc for c ∈ C

• A compatibility graph (arbitrary)
tK t1, tK t2

• An arriving job must pick a
compatible token if available

t2

t2

• Job with no feasible token will
wait in the queue

• A job can claim only one
compatible token

• An assignment rule specifies the
tie-breaking rule

tK tKt1

t1

38 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK • Only jobs with tokens are served

• A set C of multiclass jobs

λ1 λ2 . . . λL

• Poisson arrival rate λc for c ∈ C

• A compatibility graph (arbitrary)
tK t1, tK t2

• An arriving job must pick a
compatible token if available

t2

t2

• Job with no feasible token will
wait in the queue

• A job can claim only one
compatible token

• An assignment rule specifies the
tie-breaking rule

tK tKt1

t1

38 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK • Only jobs with tokens are served

• A set C of multiclass jobs

λ1 λ2 . . . λL

• Poisson arrival rate λc for c ∈ C

• A compatibility graph (arbitrary)
tK t1, tK t2

• An arriving job must pick a
compatible token if available

t2

t2

• Job with no feasible token will
wait in the queue

• A job can claim only one
compatible token

• An assignment rule specifies the
tie-breaking rule

tK tKt1

t1

38 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK • Only jobs with tokens are served

• A set C of multiclass jobs

λ1 λ2 . . . λL

• Poisson arrival rate λc for c ∈ C

• A compatibility graph (arbitrary)
tK t1, tK t2

• An arriving job must pick a
compatible token if available

t2

t2

• Job with no feasible token will
wait in the queue

• A job can claim only one
compatible token

• An assignment rule specifies the
tie-breaking rule

tK tK

t1

t1

38 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK • Only jobs with tokens are served

• A set C of multiclass jobs

λ1 λ2 . . . λL

• Poisson arrival rate λc for c ∈ C

• A compatibility graph (arbitrary)
tK t1, tK t2

• An arriving job must pick a
compatible token if available

t2

t2

• Job with no feasible token will
wait in the queue

• A job can claim only one
compatible token

• An assignment rule specifies the
tie-breaking rule

tK tK

t1

t1

38 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK • Only jobs with tokens are served

• A set C of multiclass jobs

λ1 λ2 . . . λL

• Poisson arrival rate λc for c ∈ C

• A compatibility graph (arbitrary)
tK t1, tK t2

• An arriving job must pick a
compatible token if available

t2

t2

• Job with no feasible token will
wait in the queue

• A job can claim only one
compatible token

• An assignment rule specifies the
tie-breaking rule

tK tK

t1

t1

38 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK • Only jobs with tokens are served

• A set C of multiclass jobs

λ1 λ2 . . . λL

• Poisson arrival rate λc for c ∈ C

• A compatibility graph (arbitrary)
tK t1, tK t2

• An arriving job must pick a
compatible token if available

t2

t2

• Job with no feasible token will
wait in the queue

• A job can claim only one
compatible token

• An assignment rule specifies the
tie-breaking rule

tK tKt1

t1

38 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

• A single central queue

• A set T = {t1, . . . , tK} of K tokens

t1 t2 . . . tK • Only jobs with tokens are served

• A set C of multiclass jobs

λ1 λ2 . . . λL

• Poisson arrival rate λc for c ∈ C

• A compatibility graph (arbitrary)
tK t1, tK t2

• An arriving job must pick a
compatible token if available

t2

t2

• Job with no feasible token will
wait in the queue

• A job can claim only one
compatible token

• An assignment rule specifies the
tie-breaking rule

tK tKt1

t1

38 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Jobs have an exponential service
requirement with unit mean

• Only jobs with tokens will receive
a non-negative service rate

• When a job departs, the released
token picks the next compatible
waiting job

t2

tK

t1

t2

tK

t1

• If no waiting compatible job present,
token added back to the token set

t1

t2

tK

t2

tK

39 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Jobs have an exponential service
requirement with unit mean

• Only jobs with tokens will receive
a non-negative service rate

• When a job departs, the released
token picks the next compatible
waiting job

t2

tK

t1

t2

tK

t1

• If no waiting compatible job present,
token added back to the token set

t1

t2

tK

t2

tK

39 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Jobs have an exponential service
requirement with unit mean

• Only jobs with tokens will receive
a non-negative service rate

• When a job departs, the released
token picks the next compatible
waiting job

t2

tK

t1

t2

tK

t1

• If no waiting compatible job present,
token added back to the token set

t1

t2

tK

t2

tK

39 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Jobs have an exponential service
requirement with unit mean

• Only jobs with tokens will receive
a non-negative service rate

• When a job departs, the released
token picks the next compatible
waiting job

t2

tK

t1

t2

tK

t1

• If no waiting compatible job present,
token added back to the token set

t1

t2

tK

t2

tK

39 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Jobs have an exponential service
requirement with unit mean

• Only jobs with tokens will receive
a non-negative service rate

• When a job departs, the released
token picks the next compatible
waiting job

t2

tK

t1

t2

tK

t1

• If no waiting compatible job present,
token added back to the token set

t1

t2

tK

t2

tK

39 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Jobs have an exponential service
requirement with unit mean

• Only jobs with tokens will receive
a non-negative service rate

• When a job departs, the released
token picks the next compatible
waiting job

t2

tK

t1

t2

tK

t1

• If no waiting compatible job present,
token added back to the token set

t1

t2

tK

t2

tK

39 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Jobs have an exponential service
requirement with unit mean

• Only jobs with tokens will receive
a non-negative service rate

• When a job departs, the released
token picks the next compatible
waiting job

t2

tK

t1

t2

tK

t1

• If no waiting compatible job present,
token added back to the token set

t1

t2

tK

t2

tK

39 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Jobs have an exponential service
requirement with unit mean

• Only jobs with tokens will receive
a non-negative service rate

• When a job departs, the released
token picks the next compatible
waiting job

t2

tK

t1

t2

tK

t1

• If no waiting compatible job present,
token added back to the token set

t1

t2

tK

t2

tK

39 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Jobs have an exponential service
requirement with unit mean

• Only jobs with tokens will receive
a non-negative service rate

• When a job departs, the released
token picks the next compatible
waiting job

t2

tK

t1

t2

tK

t1

• If no waiting compatible job present,
token added back to the token set

t1

t2

tK

t2

tK

39 / 76

Token assignment Releasing a token Token service rate State space

Token based
multiclass model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Markovian descriptor for token based
model
• Anonymize the class information

• (t2, 1, tk , 1, t1, 1)

• (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

oldest job

jobs that are waiting for
their compatible tokens

40 / 76

Token assignment Releasing a token Token service rate State space

Token based
multi class model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• µTj (x) denote the departure
rate of the job with token Tj

• µ(x) =
∑i

j=1 µTj (x)

41 / 76

Token assignment Releasing a token Token service rate State space

Token based
multi class model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• µTj (x) denote the departure
rate of the job with token Tj

• µ(x) =
∑i

j=1 µTj (x)

41 / 76

Token assignment Releasing a token Token service rate State space

Token based
multi class model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• µTj (x) denote the departure
rate of the job with token Tj

• µ(x) =
∑i

j=1 µTj (x)

41 / 76

Token assignment Releasing a token Token service rate State space

Token based
multi class model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• µTj (x) denote the departure
rate of the job with token Tj

• µ(x) =
∑i

j=1 µTj (x)

41 / 76

Token assignment Releasing a token Token service rate State space

Token based
multi class model

Central
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• µTj (x) denote the departure
rate of the job with token Tj

• µ(x) =
∑i

j=1 µTj (x)

41 / 76

Token service rate
Objects of departures Tj

s = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

Require the departure function µ̂(·) satisfying the following
1. µ̂(T1 . . .Tj)− µ̂(T1 . . .Tj−1) ≥ 0
2. µ̂(T1 . . .Tj) = µ̂(Tσ(1) . . .Oσ(j−1))

Order Independent rates12 =⇒ Sufficient condition for
product-form

For redundancy-d c.o.s., the Tj correspond to server Mj
For redundancy-d c.o.c., the Tj correspond to first customer
of a class cj

12A. Krzesinski, Order independent queues, in ”Queueing Networks: a
fundamental approach”, Eds: R. Boucherie, N. van Dijk, 2011

42 / 76

Token service rate
Objects of departures Tj

s = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

Require the departure function µ̂(·) satisfying the following
1. µ̂(T1 . . .Tj)− µ̂(T1 . . .Tj−1) ≥ 0
2. µ̂(T1 . . .Tj) = µ̂(Tσ(1) . . .Oσ(j−1))

Order Independent rates12 =⇒ Sufficient condition for
product-form

For redundancy-d c.o.s., the Tj correspond to server Mj
For redundancy-d c.o.c., the Tj correspond to first customer
of a class cj

12A. Krzesinski, Order independent queues, in ”Queueing Networks: a
fundamental approach”, Eds: R. Boucherie, N. van Dijk, 2011

42 / 76

Token service rate
Objects of departures Tj

s = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

Require the departure function µ̂(·) satisfying the following
1. µ̂(T1 . . .Tj)− µ̂(T1 . . .Tj−1) ≥ 0
2. µ̂(T1 . . .Tj) = µ̂(Tσ(1) . . .Oσ(j−1))

Order Independent rates12 =⇒ Sufficient condition for
product-form

For redundancy-d c.o.s., the Tj correspond to server Mj
For redundancy-d c.o.c., the Tj correspond to first customer
of a class cj

12A. Krzesinski, Order independent queues, in ”Queueing Networks: a
fundamental approach”, Eds: R. Boucherie, N. van Dijk, 2011

42 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)
µ(x)(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄ µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)
µ(x)(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄ µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)
µ(x)(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄ µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)
µ(x)(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄ µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)
µ(x)(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄ µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)
µ(x)(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄ µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)
µ(x)(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄ µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)

µ(x)(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄ µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)
µ(x)

(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄ µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)
µ(x)(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄ µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)
µ(x)(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄ µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)
µ(x)(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄

µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)
µ(x)(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄ µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)
µ(x)(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄ µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

State transitions

(T1, n1, ..,Tj , nj , ..,Ti , ni)

x

λ

(T1, n1, ..,Ti , ni + 1)

λ U
({

T 1,
..
.,

T i}
)

(T1, n1, ..,Ti , ni ,Ti+1)

λ
T

i+
1 ({T

1 ,...,T
i })

Dep(x)
µ(x)(T1, n1, ..,Ti , ni − 1)

x ′

λU({T1,...,Ti})

(T1, n1, ..,Tj , l ,T , nj − l , ..,Ti , ni)

x̄ µ
T (x̄)P

T (x̄)

x̂ = (T2,T1, n1 + 1 + n2, . . . ,Tj , nj , . . . ,Ti , ni)

x̂

µ T 2
(x̂)Q T 2

(x̂)

43 / 76

Global balance equations (GBE) for stationary distribution

• GBE: Average rate of leaving state x = Average rate of entering state x

π(x)
[
λU({·}) +

∑
Ti+1

λTi+1 (·) + µ(x)
]

= π(x ′)λU(·) +
∑

π(x̄)µT (x̄)PT (x̄)

+
∑

π(x̂)µT2 (x̂)QT2 (x̂)

• We solve this using partial balance equations (PBE’s).

44 / 76

Global balance equations (GBE) for stationary distribution

• GBE: Average rate of leaving state x = Average rate of entering state x

π(x)
[
λU({·}) +

∑
Ti+1

λTi+1 (·) + µ(x)
]

= π(x ′)λU(·) +
∑

π(x̄)µT (x̄)PT (x̄)

+
∑

π(x̂)µT2 (x̂)QT2 (x̂)

• We solve this using partial balance equations (PBE’s).

44 / 76

Global balance equations (GBE) for stationary distribution

• GBE: Average rate of leaving state x = Average rate of entering state x

π(x)
[
λU({·}) +

∑
Ti+1

λTi+1 (·) + µ(x)
]

= π(x ′)λU(·) +
∑

π(x̄)µT (x̄)PT (x̄)

+
∑

π(x̂)µT2 (x̂)QT2 (x̂)

• We solve this using partial balance equations (PBE’s).

44 / 76

Global balance equations (GBE) for stationary distribution

• GBE: Average rate of leaving state x = Average rate of entering state x

π(x)
[
λU({·}) +

∑
Ti+1

λTi+1 (·) + µ(x)
]

= π(x ′)λU(·) +
∑

π(x̄)µT (x̄)PT (x̄)

+
∑

π(x̂)µT2 (x̂)QT2 (x̂)

• We solve this using partial balance equations (PBE’s).

44 / 76

Global balance equations (GBE) for stationary distribution

• GBE: Average rate of leaving state x = Average rate of entering state x

π(x)
[
λU({·}) +

∑
Ti+1

λTi+1 (·) + µ(x)
]

= π(x ′)λU(·) +
∑

π(x̄)µT (x̄)PT (x̄)

+
∑

π(x̂)µT2 (x̂)QT2 (x̂)

• We solve this using partial balance equations (PBE’s).

44 / 76

Main Result

Theorem
The steady state distribution for the token based model in state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni) is given by

π(x) = π(0)
∏i

j=1

(
λTj ({T1,...,Tj−1})∑j

l=1 µTl (x)

) ∏i
j=1

(
λU({T1,...,Tj})∑j

l=1 µTl (x)

)nj

normalising
constant

term corresponding to
to token Tj

term corresponding to
each of the nj waiting jobs

• PGF for the number of waiting jobs and the total number of jobs

• PGF for the waiting time and sojourn time for a job

45 / 76

Main Result

Theorem
The steady state distribution for the token based model in state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni) is given by

π(x) = π(0)
∏i

j=1

(
λTj ({T1,...,Tj−1})∑j

l=1 µTl (x)

) ∏i
j=1

(
λU({T1,...,Tj})∑j

l=1 µTl (x)

)nj

normalising
constant

term corresponding to
to token Tj

term corresponding to
each of the nj waiting jobs

• PGF for the number of waiting jobs and the total number of jobs

• PGF for the waiting time and sojourn time for a job

45 / 76

Main Result

Theorem
The steady state distribution for the token based model in state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni) is given by

π(x) = π(0)
∏i

j=1

(
λTj ({T1,...,Tj−1})∑j

l=1 µTl (x)

) ∏i
j=1

(
λU({T1,...,Tj})∑j

l=1 µTl (x)

)nj

normalising
constant

term corresponding to
to token Tj

term corresponding to
each of the nj waiting jobs

• PGF for the number of waiting jobs and the total number of jobs

• PGF for the waiting time and sojourn time for a job

45 / 76

Main Result

Theorem
The steady state distribution for the token based model in state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni) is given by

π(x) = π(0)
∏i

j=1

(
λTj ({T1,...,Tj−1})∑j

l=1 µTl (x)

) ∏i
j=1

(
λU({T1,...,Tj})∑j

l=1 µTl (x)

)nj

normalising
constant

term corresponding to
to token Tj

term corresponding to
each of the nj waiting jobs

• PGF for the number of waiting jobs and the total number of jobs

• PGF for the waiting time and sojourn time for a job

45 / 76

Main Result

Theorem
The steady state distribution for the token based model in state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni) is given by

π(x) = π(0)
∏i

j=1

(
λTj ({T1,...,Tj−1})∑j

l=1 µTl (x)

) ∏i
j=1

(
λU({T1,...,Tj})∑j

l=1 µTl (x)

)nj

normalising
constant

term corresponding to
to token Tj

term corresponding to
each of the nj waiting jobs

• PGF for the number of waiting jobs and the total number of jobs

• PGF for the waiting time and sojourn time for a job

45 / 76

Main Result

Theorem
The steady state distribution for the token based model in state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni) is given by

π(x) = π(0)
∏i

j=1

(
λTj ({T1,...,Tj−1})∑j

l=1 µTl (x)

) ∏i
j=1

(
λU({T1,...,Tj})∑j

l=1 µTl (x)

)nj

normalising
constant

term corresponding to
to token Tj

term corresponding to
each of the nj waiting jobs

• PGF for the number of waiting jobs and the total number of jobs

• PGF for the waiting time and sojourn time for a job

45 / 76

Main Result

Theorem
The steady state distribution for the token based model in state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni) is given by

π(x) = π(0)
∏i

j=1

(
λTj ({T1,...,Tj−1})∑j

l=1 µTl (x)

) ∏i
j=1

(
λU({T1,...,Tj})∑j

l=1 µTl (x)

)nj

normalising
constant

term corresponding to
to token Tj

term corresponding to
each of the nj waiting jobs

• PGF for the number of waiting jobs and the total number of jobs

• PGF for the waiting time and sojourn time for a job

45 / 76

Visschers and order-independent (OI) models

• Tokens replaced by servers
• Constant service rate
• Assignment rule

• Each job of class i gets a token ci

• Order-independent (OI) service rate
• No assignment rule

46 / 76

Visschers and order-independent (OI) models

• Tokens replaced by servers

• Constant service rate
• Assignment rule

• Each job of class i gets a token ci

• Order-independent (OI) service rate
• No assignment rule

46 / 76

Visschers and order-independent (OI) models

• Tokens replaced by servers
• Constant service rate

• Assignment rule

• Each job of class i gets a token ci

• Order-independent (OI) service rate
• No assignment rule

46 / 76

Visschers and order-independent (OI) models

• Tokens replaced by servers
• Constant service rate
• Assignment rule

• Each job of class i gets a token ci

• Order-independent (OI) service rate
• No assignment rule

46 / 76

Visschers and order-independent (OI) models

• Tokens replaced by servers
• Constant service rate
• Assignment rule

• Each job of class i gets a token ci

• Order-independent (OI) service rate
• No assignment rule

46 / 76

Visschers and order-independent (OI) models

• Tokens replaced by servers
• Constant service rate
• Assignment rule

• Each job of class i gets a token ci

• Order-independent (OI) service rate
• No assignment rule

46 / 76

Visschers and order-independent (OI) models

• Tokens replaced by servers
• Constant service rate
• Assignment rule

• Each job of class i gets a token ci

• Order-independent (OI) service rate

• No assignment rule

46 / 76

Visschers and order-independent (OI) models

• Tokens replaced by servers
• Constant service rate
• Assignment rule

• Each job of class i gets a token ci

• Order-independent (OI) service rate
• No assignment rule

46 / 76

A classification of token-based central queues

Token-Based Central Queue

Visschers et al.

OI queue
Models combining COC and COS

Redundancy COS

M/M/k M/M/k
heterogeneous homogeneous

Redundancy COC

MSCCC

47 / 76

Example 1: Multiclass M/M/1 queue

• single server with multiple classes

• exponential service requirement

• state space of the form (c3, c3, c2, c1, c2, c1)

• π(c3, c3, c2, c1, c2, c1)
= (1− ρ)ρ2

c3
ρc2ρc1ρc2ρc1

where ρi = λi
µ

48 / 76

Example 1: Multiclass M/M/1 queue (token view)

server
µ

Multi class job with
a single server

central
queue

c1 c2 c3

λ1 λ2 λ3

c3

c2

c1

• We associate a unique token per class

• state space (c3, 1, c2, c1, 2)

• Service rate µ for the first token
service rate 0 for the rest

µ

0

0

• π(c3, 1, c2, c1, 2) =
(1− ρ)

(
λc3
µ

)2 (λc2
µ

)(
λc1
µ

)(
λ
µ

)2

49 / 76

Example 1: Multiclass M/M/1 queue (token view)

server
µ

Multi class job with
a single server

central
queue

c1 c2 c3

λ1 λ2 λ3

c3

c2

c1

• We associate a unique token per class

• state space (c3, 1, c2, c1, 2)

• Service rate µ for the first token
service rate 0 for the rest

µ

0

0

• π(c3, 1, c2, c1, 2) =
(1− ρ)

(
λc3
µ

)2 (λc2
µ

)(
λc1
µ

)(
λ
µ

)2

49 / 76

Example 1: Multiclass M/M/1 queue (token view)

server
µ

Multi class job with
a single server

central
queue

c1 c2 c3

λ1 λ2 λ3

c3

c2

c1

• We associate a unique token per class

• state space (c3, 1, c2, c1, 2)

• Service rate µ for the first token
service rate 0 for the rest

µ

0

0
• π(c3, 1, c2, c1, 2) =

(1− ρ)
(
λc3
µ

)2 (λc2
µ

)(
λc1
µ

)(
λ
µ

)2

49 / 76

Example 1: Multiclass M/M/1 queue (token view)

server
µ

Multi class job with
a single server

central
queue

c1 c2 c3

λ1 λ2 λ3

c3

c2

c1

• We associate a unique token per class

• state space (c3, 1, c2, c1, 2)

• Service rate µ for the first token
service rate 0 for the rest

µ

0

0
• π(c3, 1, c2, c1, 2) =

(1− ρ)
(
λc3
µ

)2 (λc2
µ

)(
λc1
µ

)(
λ
µ

)2

49 / 76

Example 2: Multi-server station with concurrent control of customers (MSCCC)

• 2 identical servers and 3 classes

• Servers are compatible with all classes

• Both servers cannot serve the same
class at any time (concurrent control)

50 / 76

Example 2: Multi-server station with concurrent control of customers (MSCCC)

server
µ

server
µ

Multi class job with
multiple server

central
queue

c1 c2 c3

λ1 λ2 λ3

c3

c2

c1

• One token per class as earlier

• At most 1 job per class is served
(concurrent control)

• Two server, three tokens

• Associate the two servers with
the first 2 active tokens

• Order-independent service rate
where only the first 2 token have
a service rate µ

µ

µ

0

• π(c3, 1, c2, c1, 2) =
(1− ρ)

(
λc3
µ

)2 (λc2
2µ

)(
λc1
2µ

)(
λ

2µ

)2

51 / 76

Example 2: Multi-server station with concurrent control of customers (MSCCC)

server
µ

server
µ

Multi class job with
multiple server

central
queue

c1 c2 c3

λ1 λ2 λ3

c3

c2

c1

• One token per class as earlier

• At most 1 job per class is served
(concurrent control)

• Two server, three tokens

• Associate the two servers with
the first 2 active tokens

• Order-independent service rate
where only the first 2 token have
a service rate µ

µ

µ

0

• π(c3, 1, c2, c1, 2) =
(1− ρ)

(
λc3
µ

)2 (λc2
2µ

)(
λc1
2µ

)(
λ

2µ

)2

51 / 76

Example 2: Multi-server station with concurrent control of customers (MSCCC)

server
µ

server
µ

Multi class job with
multiple server

central
queue

c1 c2 c3

λ1 λ2 λ3

c3

c2

c1

• One token per class as earlier

• At most 1 job per class is served
(concurrent control)

• Two server, three tokens

• Associate the two servers with
the first 2 active tokens

• Order-independent service rate
where only the first 2 token have
a service rate µ

µ

µ

0

• π(c3, 1, c2, c1, 2) =
(1− ρ)

(
λc3
µ

)2 (λc2
2µ

)(
λc1
2µ

)(
λ

2µ

)2

51 / 76

Example 3: M/M/K queue

• One class of jobs and K possibly
heterogeneous servers

• At most 3 jobs can be served at a time

• Also known as Erlang-K model

• When servers are identical, state space
denoted by number of jobs in the system

• π(n) = π(0)ρ
nKK

K ! where ρ = λ
Kµ

52 / 76

Example 3: M/M/K queue

single class jobs with
K hetergeneous servers

central
queue

m1 m2 m3

λ

m3

m1

m2

• Single class & token mi for server i

• Arriving jobs are compatible
with all tokens

• Assignment rule is uniform

• (m3,m1,m2, 3)

• π(m3,m1,m2, 3) =

π(0) λ
3µ3

λ
2(µ3+µ1)

λ
(µ3+µ1+µ2)

(
λ

(µ3+µ1+µ2)

)3

53 / 76

Example 3: M/M/K queue

single class jobs with
K hetergeneous servers

central
queue

m1 m2 m3

λ

m3

m1

m2

• Single class & token mi for server i

• Arriving jobs are compatible
with all tokens

• Assignment rule is uniform

• (m3,m1,m2, 3)

• π(m3,m1,m2, 3) =

π(0) λ
3µ3

λ
2(µ3+µ1)

λ
(µ3+µ1+µ2)

(
λ

(µ3+µ1+µ2)

)3

53 / 76

Example 3: M/M/K queue

single class jobs with
K hetergeneous servers

central
queue

m1 m2 m3

λ

m3

m1

m2

• Single class & token mi for server i

• Arriving jobs are compatible
with all tokens

• Assignment rule is uniform

• (m3,m1,m2, 3)

• π(m3,m1,m2, 3) =

π(0) λ
3µ3

λ
2(µ3+µ1)

λ
(µ3+µ1+µ2)

(
λ

(µ3+µ1+µ2)

)3

53 / 76

Example 3: M/M/K queue

single class jobs with
K hetergeneous servers

central
queue

m1 m2 m3

λ

m3

m1

m2

• Single class & token mi for server i

• Arriving jobs are compatible
with all tokens

• Assignment rule is uniform

• (m3,m1,m2, 3)

• π(m3,m1,m2, 3) =

π(0) λ
3µ3

λ
2(µ3+µ1)

λ
(µ3+µ1+µ2)

(
λ

(µ3+µ1+µ2)

)3

53 / 76

Example 3: M/M/K queue

single class jobs with
K hetergeneous servers

central
queue

m1 m2 m3

λ

m3

m1

m2

• Single class & token mi for server i

• Arriving jobs are compatible
with all tokens

• Assignment rule is uniform

• (m3,m1,m2, 3)

• π(m3,m1,m2, 3) =

π(0) λ
3µ3

λ
2(µ3+µ1)

λ
(µ3+µ1+µ2)

(
λ

(µ3+µ1+µ2)

)3

53 / 76

Example 3: M/M/K queue

single class jobs with
K hetergeneous servers

central
queue

m1 m2 m3

λ

m3

m1

m2

• Single class & token mi for server i

• Arriving jobs are compatible
with all tokens

• Assignment rule is uniform

• (m3,m1,m2, 3)

• π(m3,m1,m2, 3) =

π(0) λ
3µ3

λ
2(µ3+µ1)

λ
(µ3+µ1+µ2)

(
λ

(µ3+µ1+µ2)

)3

53 / 76

Outline

I Redundancy
I Central Queue Architecture
I Order Independent Descriptor

I Redundancy and cancel on complete
I Aggregated State Descriptor

I Redundancy and cancel on start
I Generalizations:

I Token-based framework
I Generalized Order Independent

I Impact of assumptions: scheduling and independence

54 / 76

Generalized OI queue13

Detailed state descriptor ~zm, where m is number of jobs
I It includes jobs in service and in the queue

service =⇒ track server
queue =⇒ track class

I µ(~zm) satisfies the OI Properties

Theorem: The steady-state distribution of the Generalized OI
queue is product form

=⇒ Unifying framework for product-form distributions

13K. Gardner, R. Righter, Product Forms for FCFS Queueing Models with
Arbitrary Server-Job Compatibilities: An Overview, to appear in QUESTA

55 / 76

Generalized OI queue13

Detailed state descriptor ~zm, where m is number of jobs
I It includes jobs in service and in the queue

service =⇒ track server
queue =⇒ track class

I µ(~zm) satisfies the OI Properties

Theorem: The steady-state distribution of the Generalized OI
queue is product form

=⇒ Unifying framework for product-form distributions

13K. Gardner, R. Righter, Product Forms for FCFS Queueing Models with
Arbitrary Server-Job Compatibilities: An Overview, to appear in QUESTA

55 / 76

Outline

I Redundancy
I Central Queue Architecture
I Order Independent Descriptor

I Redundancy and cancel on complete
I Aggregated State Descriptor

I Redundancy and cancel on start
I Generalizations:

I Token-based framework
I Generalized Order Independent

I Impact of assumptions: scheduling and independence

56 / 76

Stability: Impact of independence assumption

I With i.i.d. copies and FCFS, redundancy does not impact
stability.
=⇒ papers by Gardner et al., Bonald et al.

d = K =⇒ single server with rate µK
d = 1 =⇒ K indep. single servers with rate µ

I What without i.i.d. assumption?

d = K =⇒ single server with rate µ
d = 1 =⇒ K indep. single servers with rate µ

57 / 76

Stability: Impact of independence assumption

I With i.i.d. copies and FCFS, redundancy does not impact
stability.
=⇒ papers by Gardner et al., Bonald et al.

d = K =⇒ single server with rate µK
d = 1 =⇒ K indep. single servers with rate µ

I What without i.i.d. assumption?

d = K =⇒ single server with rate µ
d = 1 =⇒ K indep. single servers with rate µ

57 / 76

Stability of redundancy: Impact of assumptions

Most of existing literature is with i.i.d. copies and FCFS
=⇒ stability not reduced
yield results that are qualitatively misleading.
Need of better models: S&X 14

Main questions:
I How does redundancy with identical copies impact stability?
I Does stability depend on the scheduling discipline?

14Gardner, Harchol-Balter, Scheller-Wolf, Van Houdt, A Better Model
for Job Redundancy: Decoupling Server Slowdown and Job Size,
IEEE/ACM ToN, 2017

58 / 76

Stability of redundancy: Impact of assumptions

Most of existing literature is with i.i.d. copies and FCFS
=⇒ stability not reduced
yield results that are qualitatively misleading.
Need of better models: S&X 14

Main questions:
I How does redundancy with identical copies impact stability?
I Does stability depend on the scheduling discipline?

14Gardner, Harchol-Balter, Scheller-Wolf, Van Houdt, A Better Model
for Job Redundancy: Decoupling Server Slowdown and Job Size,
IEEE/ACM ToN, 2017

58 / 76

Redundancy d

µ µ µ . . . µ

λ

d copies

We study15:
I c.o.c. with identical copies
I scheduling discipline in servers can be PS, FCFS, or ROS.
15E. Anton, U. Ayesta, M. Jonckheere, I.M. Verloop. On the stability

of redundancy models, to appear in OR
59 / 76

Instability with identical copies

Neither total number nor minimum are Lyapunov functions

60 / 76

Scheduling disciplines

I FCFS.
I Processor-Sharing (PS). The capacity is shared equally among

all copies
I Random Order of Service (ROS)

FCFS. Stability through saturated system16

For PS.

Lower Bound: Every instant, put the copy with highest at-
tained service, in the server with smallest number of copies.
Upper Bound: All copies need to be served for the job to be
completed.

16 Baccelli, Foss, On the Saturation Rule for the Stability of Queues,
JAP, 1995

61 / 76

Scheduling disciplines

I FCFS.
I Processor-Sharing (PS). The capacity is shared equally among

all copies
I Random Order of Service (ROS)

FCFS. Stability through saturated system16

For PS.

Lower Bound: Every instant, put the copy with highest at-
tained service, in the server with smallest number of copies.
Upper Bound: All copies need to be served for the job to be
completed.

16 Baccelli, Foss, On the Saturation Rule for the Stability of Queues,
JAP, 1995

61 / 76

Scheduling disciplines

I FCFS.
I Processor-Sharing (PS). The capacity is shared equally among

all copies
I Random Order of Service (ROS)

FCFS. Stability through saturated system16

For PS.

Lower Bound: Every instant, put the copy with highest at-
tained service, in the server with smallest number of copies.
Upper Bound: All copies need to be served for the job to be
completed.

16 Baccelli, Foss, On the Saturation Rule for the Stability of Queues,
JAP, 1995

61 / 76

Summary of stability conditions

PS FCFS ROS Priority policy
i.i.d λ < µK λ < µK λ < µK λ << µK
i.c. λ < µK

d λ < ¯̀µ λ < µK –

I With PS, stability condition is the same as if all copies had to
be served.

I The stability region is larger for FCFS than for PS.
I ROS. No stability reduction.
I Stability depends on scheduling discipline.

Need to develop strategies that preserve stability17

17Y. Raaijmakers, S. Borst, O. Boxma: Delta probing policies for
redundancy. Perform. Eval (2018)

62 / 76

Summary of stability conditions

PS FCFS ROS Priority policy
i.i.d λ < µK λ < µK λ < µK λ << µK
i.c. λ < µK

d λ < ¯̀µ λ < µK –

I With PS, stability condition is the same as if all copies had to
be served.

I The stability region is larger for FCFS than for PS.
I ROS. No stability reduction.

I Stability depends on scheduling discipline.

Need to develop strategies that preserve stability17

17Y. Raaijmakers, S. Borst, O. Boxma: Delta probing policies for
redundancy. Perform. Eval (2018)

62 / 76

Summary of stability conditions

PS FCFS ROS Priority policy
i.i.d λ < µK λ < µK λ < µK λ << µK
i.c. λ < µK

d λ < ¯̀µ λ < µK –

I With PS, stability condition is the same as if all copies had to
be served.

I The stability region is larger for FCFS than for PS.
I ROS. No stability reduction.
I Stability depends on scheduling discipline.

Need to develop strategies that preserve stability17

17Y. Raaijmakers, S. Borst, O. Boxma: Delta probing policies for
redundancy. Perform. Eval (2018)

62 / 76

Summary of stability conditions

PS FCFS ROS Priority policy
i.i.d λ < µK λ < µK λ < µK λ << µK
i.c. λ < µK

d λ < ¯̀µ λ < µK –

I With PS, stability condition is the same as if all copies had to
be served.

I The stability region is larger for FCFS than for PS.
I ROS. No stability reduction.
I Stability depends on scheduling discipline.

Need to develop strategies that preserve stability17

17Y. Raaijmakers, S. Borst, O. Boxma: Delta probing policies for
redundancy. Perform. Eval (2018)

62 / 76

Non-exponential service requirements: PS18

Mean number of jobs with identical copies and exponential, deterministic
and degenerate hyperexponential service requirements.

0 0.1 0.2 0.3 0.4 0.5

/(K)

0

1

2

3

4

5

6
M

e
a
n
 n

u
m

b
e
r

o
f
jo

b
s

exp

det

p=0.25

p=0.1

d=2

d=4

18PG Taylor, Insensitivity in Stochastic Models, in ”Queueing Networks:
a fundamental approach”, Eds: R. Boucherie, N. van Dijk, 2011.

63 / 76

Non-exponential service requirements: FCFS
Mean number of jobs with identical copies and exponential, deterministic
and degenerate hyperexponential service requirements.

0 0.2 0.4 0.6

/(K)

0

5

10

15

20
M

e
a
n
 n

u
m

b
e
r

o
f
jo

b
s

exp

det

p=0.25

p=0.1

d=2

d=4

Approximations developed by: I Adan, M. Boon, G. Weiss, work in
progress

64 / 76

Non-exponential service requirements: FCFS
Mean number of jobs with identical copies and exponential, deterministic
and degenerate hyperexponential service requirements.

0 0.2 0.4 0.6

/(K)

0

5

10

15

20
M

e
a
n
 n

u
m

b
e
r

o
f
jo

b
s

exp

det

p=0.25

p=0.1

d=2

d=4

Approximations developed by: I Adan, M. Boon, G. Weiss, work in
progress

64 / 76

What about heterogeneous systems? 19

Assume µ1 < . . . < µK , redundancy-d .
I With redundancy, the stability condition is
λR = mini=d ,...,K

{
µi

(K
d)

(i−1
d−1)

}
.

I With Bernouilli routing, the stability condition is λB = Kµ1.

Redundancy-d has larger stability region than Bernoulli if
µ1d < µd .

19E. Anton, U. Ayesta, M. Jonckheere, I. M.Verloop. Improving the
Performance of Heterogeneous Data Centers through Redundancy, to appear in
ACM SIGMETRICS 2021

65 / 76

What about heterogeneous systems? 19

Assume µ1 < . . . < µK , redundancy-d .
I With redundancy, the stability condition is
λR = mini=d ,...,K

{
µi

(K
d)

(i−1
d−1)

}
.

I With Bernouilli routing, the stability condition is λB = Kµ1.

Redundancy-d has larger stability region than Bernoulli if
µ1d < µd .

19E. Anton, U. Ayesta, M. Jonckheere, I. M.Verloop. Improving the
Performance of Heterogeneous Data Centers through Redundancy, to appear in
ACM SIGMETRICS 2021

65 / 76

What about heterogeneous systems? 19

Assume µ1 < . . . < µK , redundancy-d .
I With redundancy, the stability condition is
λR = mini=d ,...,K

{
µi

(K
d)

(i−1
d−1)

}
.

I With Bernouilli routing, the stability condition is λB = Kµ1.

Redundancy-d has larger stability region than Bernoulli if
µ1d < µd .

19E. Anton, U. Ayesta, M. Jonckheere, I. M.Verloop. Improving the
Performance of Heterogeneous Data Centers through Redundancy, to appear in
ACM SIGMETRICS 2021

65 / 76

Relation with matching models
Model A:20 :Arriving jobs wait in the queue for a compatible
server, arriving servers match the first compatible job and leave the
system (even if unmatched)

Same distribution as OI queues
Model B:21 (FCFS infinite bipartite matching): arrivals are job
server pairs, both of which can queue; arriving jobs (servers) match
the first compatible server (job) if any, otherwise join queue

20I. Adan and R. Righter and G. Weiss, FCFS Parallel Service Systems
and Matching Models, Valuetools 2017

21I. Adan, A. Busic, J. Mairesse, and G. Weiss. 2015. Reversibility and
further properties of FCFS infinite bipartite matching.Math. Oper. Res.
43(2): 598-621 (2018)

66 / 76

Relation with matching models
Model A:20 :Arriving jobs wait in the queue for a compatible
server, arriving servers match the first compatible job and leave the
system (even if unmatched)

Same distribution as OI queues

Model B:21 (FCFS infinite bipartite matching): arrivals are job
server pairs, both of which can queue; arriving jobs (servers) match
the first compatible server (job) if any, otherwise join queue

20I. Adan and R. Righter and G. Weiss, FCFS Parallel Service Systems
and Matching Models, Valuetools 2017

21I. Adan, A. Busic, J. Mairesse, and G. Weiss. 2015. Reversibility and
further properties of FCFS infinite bipartite matching.Math. Oper. Res.
43(2): 598-621 (2018)

66 / 76

Relation with matching models
Model A:20 :Arriving jobs wait in the queue for a compatible
server, arriving servers match the first compatible job and leave the
system (even if unmatched)

Same distribution as OI queues
Model B:21 (FCFS infinite bipartite matching): arrivals are job
server pairs, both of which can queue; arriving jobs (servers) match
the first compatible server (job) if any, otherwise join queue

20I. Adan and R. Righter and G. Weiss, FCFS Parallel Service Systems
and Matching Models, Valuetools 2017

21I. Adan, A. Busic, J. Mairesse, and G. Weiss. 2015. Reversibility and
further properties of FCFS infinite bipartite matching.Math. Oper. Res.
43(2): 598-621 (2018)

66 / 76

Conclusions and Perspectives

I Establish relation between multi-server systems with central
queue: redundancy, JSW, etc

I Token based and Gen-OI provide unifying framework to cover
OI and “multi-job multi-server” models

I Product form distribution does not directly imply
computability
=⇒ computation of π(0).

I Not final word on product form distributions yet...
=⇒ Pass & Swap queues (Comte& Dorsman 2020) have
product form, yet not included in Token or Gen-OI

67 / 76

Conclusions and Perspectives

I Establish relation between multi-server systems with central
queue: redundancy, JSW, etc

I Token based and Gen-OI provide unifying framework to cover
OI and “multi-job multi-server” models

I Product form distribution does not directly imply
computability
=⇒ computation of π(0).

I Not final word on product form distributions yet...
=⇒ Pass & Swap queues (Comte& Dorsman 2020) have
product form, yet not included in Token or Gen-OI

67 / 76

Conclusions and Perspectives

I Establish relation between multi-server systems with central
queue: redundancy, JSW, etc

I Token based and Gen-OI provide unifying framework to cover
OI and “multi-job multi-server” models

I Product form distribution does not directly imply
computability
=⇒ computation of π(0).

I Not final word on product form distributions yet...
=⇒ Pass & Swap queues (Comte& Dorsman 2020) have
product form, yet not included in Token or Gen-OI

67 / 76

Conclusions and Perspectives

I Establish relation between multi-server systems with central
queue: redundancy, JSW, etc

I Token based and Gen-OI provide unifying framework to cover
OI and “multi-job multi-server” models

I Product form distribution does not directly imply
computability
=⇒ computation of π(0).

I Not final word on product form distributions yet...
=⇒ Pass & Swap queues (Comte& Dorsman 2020) have
product form, yet not included in Token or Gen-OI

67 / 76

Conclusions and Perspectives

I Most of the analysis on redundancy assumes FCFS
I Need to consider other classical disciplines
I Develop new redundancy-aware scheduling disciplines

I Much less known for non exponential service times
I Exploit steady-state distribution to characterize heavy-traffic,

mean-field results, asymptotic optimality etc.
=⇒ E. Cardinaels, S. Borst, J.H. van Leeuwaarden,
Redundancy Scheduling with Locally Stable Compatibility
Graphs, arxiv 2020

I Relation between JSQ(d) and Redundancy
=⇒ Coming up SNAPP talk by S. Borst

68 / 76

Conclusions and Perspectives

I Most of the analysis on redundancy assumes FCFS
I Need to consider other classical disciplines
I Develop new redundancy-aware scheduling disciplines

I Much less known for non exponential service times

I Exploit steady-state distribution to characterize heavy-traffic,
mean-field results, asymptotic optimality etc.
=⇒ E. Cardinaels, S. Borst, J.H. van Leeuwaarden,
Redundancy Scheduling with Locally Stable Compatibility
Graphs, arxiv 2020

I Relation between JSQ(d) and Redundancy
=⇒ Coming up SNAPP talk by S. Borst

68 / 76

Conclusions and Perspectives

I Most of the analysis on redundancy assumes FCFS
I Need to consider other classical disciplines
I Develop new redundancy-aware scheduling disciplines

I Much less known for non exponential service times
I Exploit steady-state distribution to characterize heavy-traffic,

mean-field results, asymptotic optimality etc.
=⇒ E. Cardinaels, S. Borst, J.H. van Leeuwaarden,
Redundancy Scheduling with Locally Stable Compatibility
Graphs, arxiv 2020

I Relation between JSQ(d) and Redundancy
=⇒ Coming up SNAPP talk by S. Borst

68 / 76

Conclusions and Perspectives

I Most of the analysis on redundancy assumes FCFS
I Need to consider other classical disciplines
I Develop new redundancy-aware scheduling disciplines

I Much less known for non exponential service times
I Exploit steady-state distribution to characterize heavy-traffic,

mean-field results, asymptotic optimality etc.
=⇒ E. Cardinaels, S. Borst, J.H. van Leeuwaarden,
Redundancy Scheduling with Locally Stable Compatibility
Graphs, arxiv 2020

I Relation between JSQ(d) and Redundancy
=⇒ Coming up SNAPP talk by S. Borst

68 / 76

(Partial) Bibliography

Redundancy:
K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytiä, and A.
Scheller-Wolf. 2016. Queueing with redundant requests: exact analysis. Queueing
Systems 83, 3-4 (2016), 227-259.
K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, M. Velednitsky, S. Zbarsky,
Redundancy-d : The power of d choices for redundancy, Operations Research, 2017

Multi-type job and servers:
Visschers, Adan, Weiss, A product form solution to a system with multi-type jobs and
multi-type servers, Queueing Systems, 2012.
Adan, Weiss, A skill based parallel service system under FCFS-ALIS: steady state,
overloads, and abandonments Stochastic Systems, INFORMS, 2014, 4, 250-299

OI Queues:
A. Krzesinski, Order independent queues, in “Queueing Networks: a fundamental
approach”, eds: R. Boucherie, N. van Dijk, 2011.

69 / 76

(Partial) Bibliography

Redundancy and product form
Ayesta, Bodas, Verloop, On a unifying product form framework for redundancy
models, Performance Evaluation, 2018
T. Bonald, C. Comte, F Mathieu, Performance of Balanced Fairness in Resource
Pools: A Recursive Approach, Sigmetrics 2017
K. Gardner and R. Righter, Product (Re)forms, Tutorial APS 2019, available at:
https://kgardner.people.amherst.edu/

Mean-Field and Heavy-Traffic:
M. Bramson, Yi Lu, B. Prabhakar, Randomized load balancing with general service
time distributions. SIGMETRICS 2010: 275-286
T. Hellemans, B. Van Houdt, On the Power-of-d-choices with Least Loaded Server
Selection, SIGMETRICS 2018
E. Cardinaels, S. Borst, J.H. van Leeuwaarden, Redundancy Scheduling with Locally
Stable Compatibility Graphs, arxiv 2020

Generalizations:
Ayesta, Bodas, Dorsman, Verloop, A token-based central queue with
order-independent service rates , to appear in OR
K. Gardner, R. Righter, Product Forms for FCFS Queueing Models with Arbitrary
Server-Job Compatibilities: An Overview, to appear in QUESTA

70 / 76

https://kgardner.people.amherst.edu/

(Partial) Bibliography

Stability:
E. Anton, U. Ayesta, M. Jonckheere, I. M.Verloop. On the stability of redundancy
models, to appear in OR
Y. Raaijmakers, S. Borst, O. Boxma, Delta probing policies for redundancy. Perform.
Eval (2018)
E. Anton, U. Ayesta, M. Jonckheere, I. M.Verloop. Improving the Performance of
Heterogeneous Data Centers through Redundancy, to appear in ACM SIGMETRICS
2021

Scheduling and efficiency in redundancy:
K. Gardner, M. Harchol-Balter, E. Hyytiä, R. Righter: Scheduling for efficiency and
fairness in systems with redundancy. Perform. Evaluation 116: 1-25 (2017)
Y. Raaijmakers, S. Borst, O. Boxma, Delta probing policies for redundancy. Perform.
Eval (2018)

Matching:
I. Adan and R. Righter and G. Weiss, FCFS Parallel Service Systems and Matching
Models, Valuetools 2017
I. Adan, A. Busic, J. Mairesse, and G. Weiss. 2015. Reversibility and further properties
of FCFS infinite bipartite matching.Math. Oper. Res. 43(2): 598-621 (2018)
J. Mairesse, P. Moyal: Stability of the stochastic matching model. J. Appl. Probab.
2016

71 / 76

Load balancing, redundancy, and multi type
job and server systems

Urtzi Ayesta

CNRS & Ikerbasque-Univ. Basque Country

Questions/Remarks welcome at : urtzi.ayesta@irit.fr

IFIP Performance 2020, 2/11/2020

71 / 76

redundancy-d with c .o.s.
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(m2,m3,m4, 2,m1)

(M1, . . . ,Md , nd ,Md+1, . . . , ni ,Mi)

72 / 76

redundancy-d with c .o.s.
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(m2,m3,m4, 2,m1)

(M1, . . . ,Md , nd ,Md+1, . . . , ni ,Mi)

72 / 76

redundancy-d with c .o.s.
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(m2,m3,m4, 2,m1)

(M1, . . . ,Md , nd ,Md+1, . . . , ni ,Mi)

72 / 76

redundancy-d with c .o.s.
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(m2,m3,m4, 2,m1)

(M1, . . . ,Md , nd ,Md+1, . . . , ni ,Mi)

72 / 76

redundancy-d with c .o.s.
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(m2,m3,m4, 2,m1)

(M1, . . . ,Md , nd ,Md+1, . . . , ni ,Mi)

72 / 76

redundancy-d with c .o.s.
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(m2,m3,m4, 2,m1)

(M1, . . . ,Md , nd ,Md+1, . . . , ni ,Mi)

72 / 76

redundancy-d with c .o.s.
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(m2,m3,m4, 2,m1)

(M1, . . . ,Md , nd ,Md+1, . . . , ni ,Mi)

72 / 76

redundancy-d with c .o.s.
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(m2,m3,m4, 2,m1)

(M1, . . . ,Md , nd ,Md+1, . . . , ni ,Mi)

72 / 76

redundancy-d with c .o.s.
N = 4 and d = 3

µ

m1
µ

m2

∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2

∧
∧

m3

∧
m4∧

∧

∧ ∧ ∧

∧
∧ ∧ ∧

∧

∧
m1

(m2,m3,m4, 2,m1)

(M1, . . . ,Md , nd ,Md+1, . . . , ni ,Mi)

72 / 76

redundancy-d with c .o.c .

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

(Fred ,Fblue , 2)

Fc1 , n1,Fc2 , n2, . . . ,Fci , ni

73 / 76

redundancy-d with c .o.c .

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

(Fred ,Fblue , 2)

Fc1 , n1,Fc2 , n2, . . . ,Fci , ni

73 / 76

redundancy-d with c .o.c .

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

(Fred ,Fblue , 2)

Fc1 , n1,Fc2 , n2, . . . ,Fci , ni

73 / 76

redundancy-d with c .o.c .

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧

∧

∧ ∧ ∧

(Fred ,Fblue , 2)

Fc1 , n1,Fc2 , n2, . . . ,Fci , ni

73 / 76

redundancy-d with c .o.c .

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

(Fred ,Fblue , 2)

Fc1 , n1,Fc2 , n2, . . . ,Fci , ni

73 / 76

redundancy-d with c .o.c .

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

(Fred ,Fblue , 2)

Fc1 , n1,Fc2 , n2, . . . ,Fci , ni

73 / 76

redundancy-d with c .o.c .

µ

m1
µ

m2

∧ ∧ ∧

µ

m3
µ

m4

∧
λ
4

{1,2,4}

∧
λ
4

{1,3,4}

∧
λ
4

{1,2,3}

∧
λ
4

{2,3,4}

µ

m1
µ

m2
µ

m3
µ

m4

∧
m2,m3,m4

∧

∧ ∧

∧
m1

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

(Fred ,Fblue , 2)

Fc1 , n1,Fc2 , n2, . . . ,Fci , ni

73 / 76

Classes that wait

Token based
multi class model

FIFO
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• What are the job classes that
constitute the nj jobs ?

• U({T1,T2, . . . ,Tj}) denotes the set
of job classes who have to wait because

tokens {T1,T2, . . . ,Tj} are busy

• U({t2}) = {L},U({t2, tK}) = {1, L}
and U({t2, tK , t1}) = {1, 2, L}

• λU({t2,tK ,t1}) = λ1 + λ2 + λL

• λU({T1,T2,...,Tj })

74 / 76

Classes that wait

Token based
multi class model

FIFO
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• What are the job classes that
constitute the nj jobs ?

• U({T1,T2, . . . ,Tj}) denotes the set
of job classes who have to wait because

tokens {T1,T2, . . . ,Tj} are busy

• U({t2}) = {L},U({t2, tK}) = {1, L}
and U({t2, tK , t1}) = {1, 2, L}

• λU({t2,tK ,t1}) = λ1 + λ2 + λL

• λU({T1,T2,...,Tj })

74 / 76

Classes that wait

Token based
multi class model

FIFO
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• What are the job classes that
constitute the nj jobs ?

• U({T1,T2, . . . ,Tj}) denotes the set
of job classes who have to wait because

tokens {T1,T2, . . . ,Tj} are busy

• U({t2}) = {L},U({t2, tK}) = {1, L}
and U({t2, tK , t1}) = {1, 2, L}

• λU({t2,tK ,t1}) = λ1 + λ2 + λL

• λU({T1,T2,...,Tj })

74 / 76

Classes that wait

Token based
multi class model

FIFO
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• What are the job classes that
constitute the nj jobs ?

• U({T1,T2, . . . ,Tj}) denotes the set
of job classes who have to wait because

tokens {T1,T2, . . . ,Tj} are busy

• U({t2}) = {L},U({t2, tK}) = {1, L}
and U({t2, tK , t1}) = {1, 2, L}

• λU({t2,tK ,t1}) = λ1 + λ2 + λL

• λU({T1,T2,...,Tj })

74 / 76

Classes that wait

Token based
multi class model

FIFO
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• What are the job classes that
constitute the nj jobs ?

• U({T1,T2, . . . ,Tj}) denotes the set
of job classes who have to wait because

tokens {T1,T2, . . . ,Tj} are busy

• U({t2}) = {L},U({t2, tK}) = {1, L}
and U({t2, tK , t1}) = {1, 2, L}

• λU({t2,tK ,t1}) = λ1 + λ2 + λL

• λU({T1,T2,...,Tj })

74 / 76

Classes that wait

Token based
multi class model

FIFO
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• What are the job classes that
constitute the nj jobs ?

• U({T1,T2, . . . ,Tj}) denotes the set
of job classes who have to wait because

tokens {T1,T2, . . . ,Tj} are busy

• U({t2}) = {L},U({t2, tK}) = {1, L}
and U({t2, tK , t1}) = {1, 2, L}

• λU({t2,tK ,t1}) = λ1 + λ2 + λL

• λU({T1,T2,...,Tj })

74 / 76

Classes that wait

Token based
multi class model

FIFO
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• What are the job classes that
constitute the nj jobs ?

• U({T1,T2, . . . ,Tj}) denotes the set
of job classes who have to wait because

tokens {T1,T2, . . . ,Tj} are busy

• U({t2}) = {L},U({t2, tK}) = {1, L}
and U({t2, tK , t1}) = {1, 2, L}

• λU({t2,tK ,t1}) = λ1 + λ2 + λL

• λU({T1,T2,...,Tj })

74 / 76

Activating a token

Token based
multi class model

FIFO
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• Given that tokens {T1,T2, . . . ,Ti}
are busy, at what rate does a free
token Ti+1 become busy ?

• Denoted by λTi+1 ({T1,T2, . . . ,Ti})

• λt2 ({φ}) = λL

• λtK ({t2}) = λ1 + pλ2

• λt1 ({t2, tK}) = λ2

75 / 76

Activating a token

Token based
multi class model

FIFO
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• Given that tokens {T1,T2, . . . ,Ti}
are busy, at what rate does a free
token Ti+1 become busy ?

• Denoted by λTi+1 ({T1,T2, . . . ,Ti})

• λt2 ({φ}) = λL

• λtK ({t2}) = λ1 + pλ2

• λt1 ({t2, tK}) = λ2

75 / 76

Activating a token

Token based
multi class model

FIFO
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• Given that tokens {T1,T2, . . . ,Ti}
are busy, at what rate does a free
token Ti+1 become busy ?

• Denoted by λTi+1 ({T1,T2, . . . ,Ti})

• λt2 ({φ}) = λL

• λtK ({t2}) = λ1 + pλ2

• λt1 ({t2, tK}) = λ2

75 / 76

Activating a token

Token based
multi class model

FIFO
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• Given that tokens {T1,T2, . . . ,Ti}
are busy, at what rate does a free
token Ti+1 become busy ?

• Denoted by λTi+1 ({T1,T2, . . . ,Ti})

• λt2 ({φ}) = λL

• λtK ({t2}) = λ1 + pλ2

• λt1 ({t2, tK}) = λ2

75 / 76

Activating a token

Token based
multi class model

FIFO
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• Given that tokens {T1,T2, . . . ,Ti}
are busy, at what rate does a free
token Ti+1 become busy ?

• Denoted by λTi+1 ({T1,T2, . . . ,Ti})

• λt2 ({φ}) = λL

• λtK ({t2}) = λ1 + pλ2

• λt1 ({t2, tK}) = λ2

75 / 76

Activating a token

Token based
multi class model

FIFO
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• Given that tokens {T1,T2, . . . ,Ti}
are busy, at what rate does a free
token Ti+1 become busy ?

• Denoted by λTi+1 ({T1,T2, . . . ,Ti})

• λt2 ({φ}) = λL

• λtK ({t2}) = λ1 + pλ2

• λt1 ({t2, tK}) = λ2

75 / 76

Activating a token

Token based
multi class model

FIFO
queue

t1 t2 . . . tK

λ1 λ2 . . . λL

tK t1, tK t2

t2

t2

tK tKt1

t1

• Consider a generic state
x = (T1, n1, . . . ,Tj , nj , . . . ,Ti , ni)

• Given that tokens {T1,T2, . . . ,Ti}
are busy, at what rate does a free
token Ti+1 become busy ?

• Denoted by λTi+1 ({T1,T2, . . . ,Ti})

• λt2 ({φ}) = λL

• λtK ({t2}) = λ1 + pλ2

• λt1 ({t2, tK}) = λ2

75 / 76

Applications of OI
I Multi-class M/M/1 queue

I MSCCC - Multi-server with concurrent customers

2 identical servers, 3 classes,
servers compatible with all classes

Concurrent control: Both servers
cannot serve the same class simul-
taneously

I Processor-Sharing systems: µ(c1, . . . , cn) might depend on a
scalar function φ(n)

76 / 76

Applications of OI
I Multi-class M/M/1 queue
I MSCCC - Multi-server with concurrent customers

2 identical servers, 3 classes,
servers compatible with all classes

Concurrent control: Both servers
cannot serve the same class simul-
taneously

I Processor-Sharing systems: µ(c1, . . . , cn) might depend on a
scalar function φ(n)

76 / 76

Applications of OI
I Multi-class M/M/1 queue
I MSCCC - Multi-server with concurrent customers

2 identical servers, 3 classes,
servers compatible with all classes

Concurrent control: Both servers
cannot serve the same class simul-
taneously

I Processor-Sharing systems: µ(c1, . . . , cn) might depend on a
scalar function φ(n)

76 / 76

	Redundancy in Queueing Systems

