Optimal Multiserver Scheduling

with Unknown Job Sizes in Heavy Traffic

Ziv Scully
Isaac Grosof
Mor Harchol-Balter

Carnegie Mellon University

M/G/k
 Optimal Multiserver Scheduling
 with Unknown Job Sizes in Heavy Traffic

Ziv Scully
Isaac Grosof
Mor Harchol-Balter

Carnegie Mellon University

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/1 Queue

M/G/k Queue

M/G/k Queue

M/G/k Queue

k servers, each speed $1 / k$

M/G/k Queue

k servers, each speed $1 / k$

Response Time

Response Time

Response Time

Response Time

Response Time

Goal: schedule to minimize mean response time $\mathrm{E}[T]$

Minimizing E[T]

Minimizing E[T]

Known job sizes
$\mathrm{M} / \mathrm{G} / 1$

M/G/k

Minimizing E[T]

Known job sizes

$\mathrm{M} / \mathrm{G} / 1$	SRPT
$\mathrm{M} / \mathrm{G} / k$	

Minimizing E[T]

Known job sizes

M/G/1

M/G/k

SRPT

Minimizing E[T]

Minimizing $\mathbf{E}[T]$

Known job sizes
in heavy traffic,
X "finite variance")

SRPT
 SRPT-k remaining size $\{$

This talk: unknown job sizes

Unknown Job Sizes

Unknown Job Sizes

size unknown $\approx\left\{\begin{array}{l}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{j}\end{array}\right.$

Unknown Job Sizes

Unknown Job Sizes

size unknown $\approx\left\{\left\{\begin{array}{c}\text { 六 } \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \frac{1}{2}\end{array}\right\}\right.$ age known $\sqrt{ }$

Optimal for $\mathrm{M} / \mathrm{G} / 1$: Gittins

Optimal for $\mathrm{M} / \mathrm{G} / 1$: Gittins

Optimal for M/G/1: Gittins

Optimal for $\mathrm{M} / \mathrm{G} / 1$: Gittins

Optimal for $\mathrm{M} / \mathrm{G} / 1$: Gittins

Optimal for M/G/1: Gittins

$$
r_{\text {Gittins }}(a)=\inf _{b>a} \frac{\mathrm{E}[\min \{X, b\} \mid X>a]}{\mathrm{P}[X \leq b \mid X>a]}
$$

a.k.a. priority

Optimal for M/G/1: Gittins

Minimizing E[T]

Known job sizes
Unknown job sizes
in heavy traffic,
X "finite variance"
SRPT- k

Minimizing E[T]

Known job sizes
Unknown job sizes

M/G/1
SRPT
Gittins

SRPT-k
in heavy traffic,
X "finite variance"

Minimizing E[T]

Known job sizes
Unknown job sizes
in heavy traffic,
X "finite variance"

Gittins

???

Minimizing E[T]

Known job sizes
Unknown job sizes

M/G/1
SRPT
Gittins

SRPT-k

Does Gittins-k work?

1. What's wrong with Gittins-k?
2. What is M-Gittins-k?
3. How does M-Gittins-k help?

Analyzing Gittins-1

Analyzing Gittins-1

Analyzing Gittins-1

Suppose I'm a job of size x

Analyzing Gittins- $\mathbb{1}$

Suppose I'm a job of size x

Analyzing Gittins-1

Suppose I'm a job of size x

Analyzing Gittins-1

Suppose I'm a job of size x

Analyzing Gittins-1

Suppose I'm a job of size x

Analyzing Gittins-1

Suppose I'm a job of size x

Analyzing Gittins-1

Suppose I'm a job of size x

Analyzing Gittins-1

Suppose I'm a job of size x

Analyzing Gittins-1

Suppose I'm a job of size x

Analyzing Gittins-1

Suppose I'm a job of size x

Analyzing Gittins-1

Suppose I'm a job of size x

Analyzing Gittins-1

Suppose I'm a job of size x

Analyzing Gittins-1

Suppose I'm a job of size x

Analyzing Gittins-1

Suppose I'm a job of size x

Analyzing Gittins-1

Suppose I'm a job of size x

Analyzing Gittins-1

Suppose I'm a job of size x

I can ignore $\left\{\begin{array}{c}\text { old jobs (A \& B } \\ \text { new jobs (C) }\end{array}\right\}$ after age $\left\{\begin{array}{l}? ? ? \\ ? ? ?\end{array}\right\}$

Analyzing Gittins-1

Suppose I'm a job of size x

I can ignore $\left\{\begin{array}{c}\text { old jobs (A \& B) } \\ \text { new jobs (C) }\end{array}\right\}$ after age $\left\{\begin{array}{c}z(x) \\ ? ? ?\end{array}\right\}$

Analyzing Gittins-1

Suppose I'm a job of size x

I can ignore $\left\{\begin{array}{c}\text { old jobs (A \& B) } \\ \text { new jobs (C) }\end{array}\right\}$ after age $\left\{\begin{array}{c}z(x) \\ y(x)\end{array}\right\}$

What goes wrong for Gittins-k?

Analyzing Gittins-k

Suppose I'm a job of size x

Analyzing Gittins-k

Suppose I'm a job of size x

Analyzing Gittins-k

Suppose I'm a job $\quad{ }_{k=2}$ c

Analyzing Gittins-k

 Suppose I'm a job $\overbrace{k=2}$

Analyzing Gittins-k

 Suppose I'm a job $k=2$ c

Analyzing Gittins-k

Suppose I'm a job $\overbrace{k=2}$

Analyzing Gittins-k

 Suppose I'm a job $\overbrace{k=2}$

Analyzing Gittins-k

Suppose I'm a job $k=2$ c

Analyzing Gittins-k

 Suppose I'm a job $k=2$ c

Analyzing Gittins-k

Analyzing Gittins-k

Analyzing Gittins-k

Analyzing Gittins-k

Need a version of Gittins without waves

New Policy: M-Gittins

New Policy: M-Gittins

New Policy: $\underset{\text { M-Gittins }}{\text { monotonic }}$

New Policy: M-Gittins

New Policy: M-Gittins
 monotonic

$$
r_{\text {M-Gittins }}(a)=\max _{0 \leq b \leq a} r_{\text {Gittins }}(b)
$$

M-Gittins- k Saves the Day

Suppose I'm a job of size x

M-Gittins-k Saves the Day

Suppose I'm a job of size x

M-Gittins-k Saves the Day

Suppose I'm a job of size x

M-Gittins- k Saves the Day
$k=2$ pose I'm a job of size x

M-Gittins- k Saves the Day
$k=2$ pose I'm a job of size x

M-Gittins- k Saves the Day
$k=2$ pose I'm a job of size x

M-Gittins- k Saves the Day $k=2$ pose I'm a job of size x

M-Gittins- k Saves the Day
$k=2$ pose I'm a job of size x

I can ignore $\left\{\begin{array}{c}\text { old jobs } \\ \text { new jobs (C \& D) }\end{array}\right\}$ after age $\left\{\begin{array}{l}z(x) \\ ? ? ?\end{array}\right\}$

M-Gittins- k Saves the Day $k=2$ pose I'm a job of size x

I can ignore $\left\{\begin{array}{c}\text { old jobs } \\ \text { new jobs (C \& D) }\end{array}\right\}$ after age $\left\{\begin{array}{l}z(x) \\ ? ? ?\end{array}\right\}$

M-Gittins- k Saves the Day
$k=2$ pose I'm a job of size x

M-Gittins- k Saves the Day $k=2$ pose I'm a job of size x
 I can ignore $\left\{\begin{array}{c}\text { old jobs } \\ \text { new jobs (C \& D) }\end{array}\right\}$ after age $\left\{\begin{array}{l}z(x) \\ ? ? ?\end{array}\right\}$

M-Gittins- k Saves the Day
$k=2$ pose I'm a job of size x

M-Gittins- k Saves the Day $k=2$ pose I'm a job of size x

I can ignore $\left\{\begin{array}{c}\text { old jobs } \\ \text { new jobs (C \& D) }\end{array}\right\}$ after age $\left\{\begin{array}{l}z(x) \\ ? ? ?\end{array}\right\}$

M-Gittins- k Saves the Day

$k=2$ ppose I'm a
rank

I can ignore $\left\{\begin{array}{c}\text { old jobs } \\ \text { new jobs (C \& D) }\end{array}\right\}$ after age $\left\{\begin{array}{l}z(x) \\ ? ? ?\end{array}\right\}$

M-Gittins- k Saves the Day

$k=2$ ppose I'm a

C arrived after me

I can ignore $\left\{\begin{array}{c}\text { old jobs } \\ \text { new jobs (C \& D) }\end{array}\right\}$ after age $\left\{\begin{array}{l}z(x) \\ ? ? ?\end{array}\right\}$

M-Gittins- k Saves the Day

$k=2$ ppose I'm a

C arrived after me

I can ignore $\left\{\begin{array}{c}\text { old jobs } \\ \text { new jobs (C \& D) }\end{array}\right\}$ after age $\left\{\begin{array}{c}z(x) \\ y(x)\end{array}\right\}$

M-Gittins- k Saves the Day

Goal: minimize heavy-traffic $\mathrm{E}[T]$ in $\mathrm{M} / \mathrm{G} / k$ with unknown job sizes

Key idea: new monotonic variant of Gittins, namely M-Gittins

Theorem: $\lim _{\rho \rightarrow 1} \frac{\mathrm{E}\left[T_{\mathrm{M} \text {-Gittins-k }}\right]}{\mathrm{E}\left[T_{\text {Gittins-1 }}\right]}=1$

Goal: minimize heavy-traffic $E[T]$
in $M / G / k$ with unknown job sizes

Key idea: new monotonic variant of Gittins, namely M-Gittins

Theorem: $\lim _{\rho \rightarrow 1} \frac{\mathrm{E}\left[T_{\mathrm{M} \text {-Gittins-k }}\right]}{\mathrm{E}\left[T_{\text {Gittins-1 }}\right]}=1$

Get in touch: zscully@cs.cmu.edu

Bonus Slides

Main Results

Suppose X is heavy-tailed with finite variance

Main Results

Suppose X is heavy-tailed with finite variance
similar results for some
light-tailed X (see paper)

Main Results

Suppose X is heavy-tailed with finite variance
similar results for some light-tailed X (see paper)

Step 1: link M-Gittins-k to Gittins-1

Step 2: analyze heavy-traffic Gittins-1

Main Results

Suppose X is heavy-tailed with finite variance
similar results for some
light-tailed X (see paper)
Step 1: link M-Gittins- k to Gittins- 1

$$
\mathrm{E}\left[T_{\mathrm{M}-\text { Gittins-k }}\right] \leq \mathrm{E}\left[T_{\mathrm{Gittins}-1}\right]+k \cdot O\left(\log \frac{1}{1-\rho}\right)
$$

Step 2: analyze heavy-traffic Gittins-1

Main Results

Suppose X is heavy-tailed with finite variance

similar results for some

light-tailed X (see paper)
Step 1: link M-Gittins- k to Gittins- 1

$$
\mathrm{E}\left[T_{\mathrm{M}-\text { Gittins-k }}\right] \leq \mathrm{E}\left[T_{\mathrm{Gittins}-1}\right]+k \cdot O\left(\log \frac{1}{1-\rho}\right)
$$

Step 2: analyze heavy-traffic Gittins-1

$$
\mathbf{E}\left[T_{\text {Gittins-1 }}\right]=\omega\left(\log \frac{1}{1-\rho}\right)
$$

Main Results

Suppose X is heavy-tailed with finite variance

similar results for some

light-tailed X (see paper)
Step 1: link M-Gittins-k to Gittins-1

$$
\mathrm{E}\left[T_{\mathrm{M}-\text { Gittins-k }}\right] \leq \mathrm{E}\left[T_{\mathrm{Gittins}-1}\right]+k \cdot O\left(\log \frac{1}{1-\rho}\right)
$$

Step 2: analyze heavy-traffic Gittins-1

$$
\mathbf{E}\left[T_{\text {Gittins-1 }}\right]=\omega\left(\log \frac{1}{1-\rho}\right)
$$

Heavy-Traffic Optimality

Heavy-Traffic Optimality

Theorem:
M-Gittins- k is heavy-traffic optimal in the M/G/k, specifically
$\lim _{\rho \rightarrow 1} \frac{\mathrm{E}\left[T_{\mathrm{M}-\text { Gittins-k }}\right]}{\mathrm{E}\left[T_{\text {Gittins-1 }}\right]}=1$,

Heavy-Traffic Optimality

Theorem:
M-Gittins-k is heavy-traffic optimal in the M/G/k, specifically

$$
\lim _{\rho \rightarrow 1} \frac{\mathrm{E}\left[T_{\mathrm{M}-\text { Gittins-k }}\right]}{\mathrm{E}\left[T_{\text {Gittins-1 }}\right]}=1,
$$

if X is in any of the following classes:

Heavy-Traffic Optimality

Theorem:
M-Gittins-k is heavy-traffic optimal in the M/G/k, specifically

$$
\lim _{\rho \rightarrow 1} \frac{\mathrm{E}\left[T_{\mathrm{M}-\text { Gittins-k }}\right]}{\mathrm{E}\left[T_{\text {Gittins-1 }}\right]}=1,
$$

if X is in any of the following classes:

- bounded

Heavy-Traffic Optimality

Theorem:
M-Gittins- k is heavy-traffic optimal in the M/G/k, specifically

$$
\lim _{\rho \rightarrow 1} \frac{\mathrm{E}\left[T_{\mathrm{M}-\text { Gittins-k }}\right]}{\mathrm{E}\left[T_{\text {Gittins-1 }}\right]}=1,
$$

if X is in any of the following classes:

- bounded
- "finite-variance heavy-tailed"
(O-regularly varying with Matuszewska indices less than -2)

Heavy-Traffic Optimality

Theorem:
M-Gittins- k is heavy-traffic optimal in the M/G/k, specifically

$$
\lim _{\rho \rightarrow 1} \frac{\mathrm{E}\left[T_{\mathrm{M}-\text { Gittins-k }}\right]}{\mathrm{E}\left[T_{\text {Gittins-1 }}\right]}=1,
$$

if X is in any of the following classes:

- bounded
- "finite-variance heavy-tailed"
(O-regularly varying with Matuszewska indices less than -2)
- $\operatorname{MDA}(\Lambda)$ with "quasi-decreasing hazard rate", e.g. $h(x)=\Theta\left(x^{-\gamma}\right)$

Heavy-Traffic Optimality

Theorem:
M-Gittins- k is heavy-traffic optimal in the M/G/k, specifically

$$
\lim _{\rho \rightarrow 1} \frac{\mathrm{E}\left[T_{\mathrm{M}-\text { Gittins-k }}\right]}{\mathrm{E}\left[T_{\text {Gittins-1 }}\right]}=1,
$$

if X is in any of the following classes:

- bounded
(O-regularly varying with Matuszewska indices less than -2)
Weibull... $\operatorname{MDA}(\Lambda)$ with "quasi-decreasing hazard rate", e.g. $h(x)=\Theta\left(x^{-\gamma}\right)$

M/G/1 Heavy-Traffic Scaling

M/G/1 Heavy-Traffic Scaling

"finite variance" $\{$

M/G/1 Heavy-Traffic Scaling

Theorem:
"infinite variance" $\left\{\begin{array}{l}\text { If } X \in \operatorname{OR}(-2,-1) \text {, then } \\ \mathbf{E}\left[T_{\text {Gittins-1 }}\right]=\Theta\left(\log \frac{1}{1-\rho}\right),\end{array}\right.$
"finite variance" $\{$

M/G/1 Heavy-Traffic Scaling

Theorem:
"infinite variance" $\left\{\begin{array}{l}\text { If } X \in \operatorname{OR}(-2,-1) \text {, then } \\ \mathrm{E}\left[T_{\text {Gittins-1 }}\right]=\Theta\left(\log \frac{1}{1-\rho}\right),\end{array}\right.$
"finite variance" $\left\{\begin{array}{l}\text { and if } X \in \mathrm{OR}(-\infty,-2) \cup \operatorname{MDA}(\Lambda) \cup \mathrm{ENBUE}, \\ \text { then } \\ \mathrm{E}\left[T_{\text {Gittins- }-1}\right]=\Theta\left(\left.\frac{1}{1-\rho} \right\rvert\, \max _{0 \leq b \leq \bar{F}_{e}^{-1}(1-\rho)} \mathrm{E}[X-b \mid X>b]\right) .\end{array}\right.$

