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Caching Objective: Maximize Hit Probability

Origin Server

Users

—

Cache Miss

# of reqs served from cache

Maximize Object Hit Prob:

total # of reqs



Caching Dimensions

(1 When to store in cache
* Prefetching: Store before needed
 Non-prefetching: Store on request

J To store or not
 Admission: May not store the requested object
* Eviction: Must store the requested object

J Knowledge of future
* Anticipative: Entire request trace is known
 Non-anticipative: Only request history is known



Many Caching Policies....
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How to evaluate the performance of these policies?



State of the Art (Upper Bounds)

Equal size objects Variable size objects
[ Independent Reference Model d Finding OPT is NP-hard
e Statically cache most popular * Approximate solutions exist
objects J Upper bound on object hit
 Arbitrary requests: Belady’s MIN probability
* Evict the object whose next request  FOO and PFOO methods [Berger
is farthest in future et al, Sigmetrics’18]

* Anticipative and non-prefetching * Anticipative and non-prefetching



Questions:

1. Online upper bound with limited

statistical knowledge of object request
pattern?

2. More general assumptions than IRM?

Non-anticipative
and prefetching
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Background:
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System Model

 Single Cache; Size: B
d n objects: {1, ..., n}
. Equal-size objects

- Minimal assumptions on object request processes

* (Can be dependent processes
 HR function should be well defined at all points of time




Our Approach:
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upper bound similar to instantaneous LFU
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Object Hit Probability
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Results: Equal-size Objects

HR Based bound tighter than Belady’s
Similar results for other irt distributions
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Extension to Variable Sized Objects

J Upper bound on number of byte hits
* Normalize by object sizes
 Maps to fractional knapsack problem

J Upper bound on number of object hits
e Mapsto 0 — 1 knapsack problem
* Order by HR/size
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Results: Variable-size contents

HR Based bound indeed an upper bound!!
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Preliminary Results: Real-world Data Trace

Parametric Fitting to Generalized Pareto Distribution
HR Based bound still an upper bound!!
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Future Directions

JPrefetching cost for realizable Hazard Rate Based Policy

JdNon-parametric HR estimators
e Gaussian kernel density estimators

J1Online fitting of distributions and HR estimation

JClosed-form upper bound?



Questions




