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Talk Outline

q Motivation
q Background
q Hazard Rate Based Upper Bound 
q Extension to Variable-size Objects
q Trace Driven Simulation
q Future work

2



Caching Objective: Maximize Hit Probability
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Caching Dimensions
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q When to store in cache
• Prefetching: Store before needed
• Non-prefetching: Store on request

q To store or not
• Admission: May not store the requested object
• Eviction: Must store the requested object

q Knowledge of future
• Anticipative: Entire request trace is known
• Non-anticipative: Only request history is known



Many Caching Policies….
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How to evaluate the performance of these policies? 
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State of the Art (Upper Bounds)
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Equal size objects Variable size objects
q Independent Reference Model

• Statically cache most popular 
objects

q Arbitrary requests: Belady’s MIN
• Evict the object whose next request 

is farthest in future
• Anticipative and non-prefetching

q Finding OPT is NP-hard
• Approximate solutions exist

q Upper bound on object hit 
probability
• FOO and PFOO methods [Berger 

et al, Sigmetrics’18]
• Anticipative and non-prefetching
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Solution:
1. Our Approach: Hazard rate based ordering

Questions:
1. Online upper bound with limited 

statistical knowledge of object request 
pattern?

2. More general assumptions than IRM?

Non-anticipative 
and prefetching



Background: Hazard Rate Function
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System Model
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q Single Cache; Size: !
q " objects: {1, … , "}
q Equal-size objects
q Minimal assumptions on object request processes
• Can be dependent processes
• HR function should be well defined at all points of time



Our Approach: Hazard Rate Based Ordering
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HR upper bound similar to instantaneous LFU

HR Ordering

(Decreasing)
Hit if requested object belongs
to one of top ! HRs
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Results: Equal-size Objects

11Generalized Pareto inter-request times

# of objects = "###
# of requests = $ × "#$

HR Based bound tighter than Belady’s
Similar results for other irt distributions 



Extension to Variable Sized Objects
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q Upper bound on number of byte hits
• Normalize by object sizes
• Maps to fractional knapsack problem

q Upper bound on number of object hits
• Maps to ! − # knapsack problem
• Order by HR/size



Results: Variable-size contents

13Generalized Pareto inter-request times
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# of objects = "##
(%&' ()*+ ,-. & max ",-.) 
# of requests = "#,

HR Based bound indeed an upper bound!!



Preliminary Results: Real-world Data Trace
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Parametric Fitting to Generalized Pareto Distribution            
HR Based bound still an upper bound!!



Future Directions

qPrefetching cost for realizable Hazard Rate Based Policy
qNon-parametric HR estimators
• Gaussian kernel density estimators

qOnline fitting of distributions and HR estimation
qClosed-form upper bound?



Questions
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