A New Upper Bound on Cache Hit Probability for Non-anticipative Caching Policies

Nitish K. Panigrahy, Philippe Nain, Giovanni Neglia, Don Towsley

Performance 2020

Talk Outline

- Motivation
- Background
- Hazard Rate Based Upper Bound
- Extension to Variable-size Objects
- □ Trace Driven Simulation
- **G** Future work

Caching Objective: Maximize Hit Probability

Caching Dimensions

When to store in cache

- **Prefetching**: Store before needed
- Non-prefetching: Store on request
- To store or not
 - Admission: May not store the requested object
 - Eviction: Must store the requested object
- □ Knowledge of future
 - Anticipative: Entire request trace is known
 - Non-anticipative: Only request history is known

Many Caching Policies....

State of the Art (Upper Bounds)

Equal size objects

Independent Reference Model

- Statically cache most popular objects
- □ Arbitrary requests: Belady's MIN
 - Evict the object whose next request is farthest in future
 - Anticipative and non-prefetching

Variable size objects

□ Finding OPT is NP-hard

- Approximate solutions exist
- Upper bound on object hit probability
 - FOO and PFOO methods [Berger et al, Sigmetrics'18]
 - Anticipative and non-prefetching

Questions:

- 1. Online upper bound with limited statistical knowledge of object request pattern?
- 2. More general assumptions than IRM?

Solution:

1. Our Approach: Hazard rate based ordering

Non-anticipative

and prefetching

Background: Hazard Rate Function

$$\lambda_i^*(t) = \frac{f_i(t|H_i(t))}{1 - F_i(t|H_i(t))}.$$

Conditional density function

Conditional ccdf

Hazard Rate Function

System Model

- □ Single Cache; Size: *B*
- \Box *n* objects: {1, ..., *n*}
- Equal-size objects
- Minimal assumptions on object request processes
 - Can be **dependent** processes
 - HR function should be well defined at all points of time

HR upper bound similar to instantaneous LFU

Results: Equal-size Objects

HR Based bound tighter than **Belady's** Similar results for other irt distributions

Extension to Variable Sized Objects

Upper bound on number of byte hits

- Normalize by object sizes
- Maps to fractional knapsack problem

Upper bound on number of object hits

- Maps to 0 1 knapsack problem
- Order by HR/size

Results: Variable-size contents

Preliminary Results: Real-world Data Trace

Parametric Fitting to Generalized Pareto Distribution **HR** Based bound still an upper bound!!

Future Directions

□ Prefetching cost for realizable Hazard Rate Based Policy

□Non-parametric HR estimators

• Gaussian kernel density estimators

Online fitting of distributions and HR estimation

Closed-form upper bound?

Questions