Infer User Preferences from Aggregate Measurements: A Novel Message Passing Algorithm for Privacy Attack

Du Su, Yi Lu University of Illinois, Urbana-Champaign

Data Privacy

- Social media platforms
 - Identity, preference
 - Optimize algorithm
- Data security threats
 - Addiction, abuse

- Adobe. Date: October 2013. Impact: 153 million user records. ...
- Adult Friend Finder. Date: October 2016. Impact: 412.2
 million accounts. ...
- Canva. Date: May 2019. ...
- eBay. Date: May 2014. ...
- Equifax. Date: July 29, 2017. ...
- Dubsmash. Date: December 2018. ...
- Heartland Payment Systems. Date: March 2008. ...
- LinkedIn. Date: 2012 (and 2016)

Traditional privacy protection

- Aggregation
 - No storage of sensitive individual record
 - Total reads / reviews

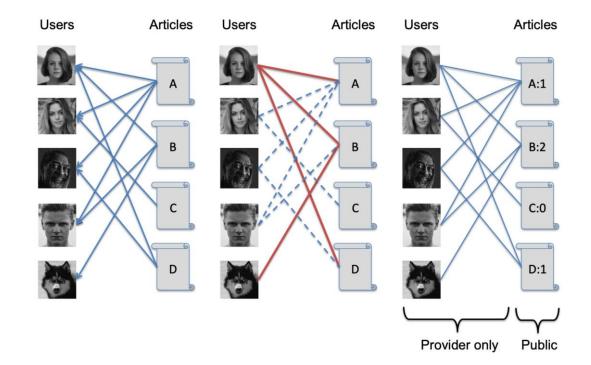
106,536 views • Apr 1, 2020

Traditional privacy protection

- Aggregation
- High degree of centralization
 - Actively choose how to aggregate
 - Reversable: recover user preference

Recover preferences: problem

- Content pushing
 - Push, read, aggregate
- Inferring
 - Recover user preference from aggregated reads



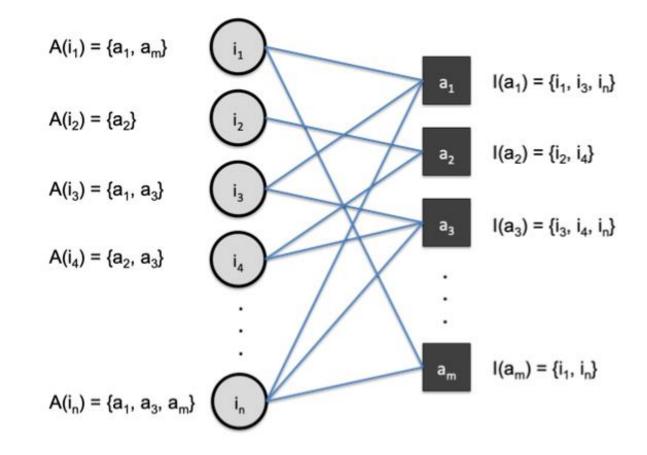
Recover preferences: problem

• Goal

- Small number of articles pushed to user
- Inference algorithm is of low complexity
- As few articles as possible

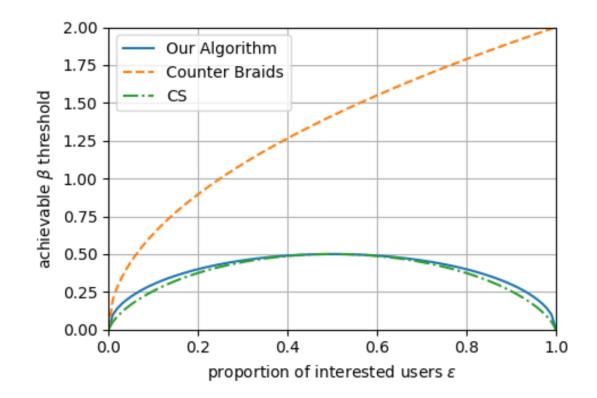
Recover preferences: formulation

- m articles: a = 1, 2, ..., m
- n users: i = 1, 2, ..., n
 - Preferences: $p_i \in \{0,1\}$
 - ϵ are interested
- a pushed to a set of users I(a)
 - User view if $p_i = 1$.
 - Aggregate reads $r_a = \sum_{i \in I(a)} p_i$
- Goal:
 - Recover p_i
 - Minimize $\beta = \frac{m}{n}$



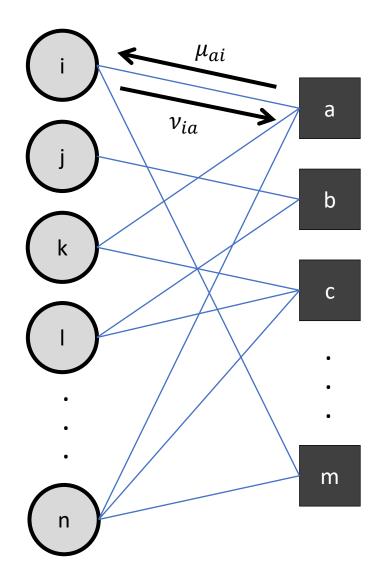
Inferring algorithm: related work

- Compressing sensing
 - $O(n^3)$ complexity
- Counter Braids
 - O(n) complexity
 - Optimal ratio: $\beta = 2\sqrt{\epsilon}$
- Our problem
 - O(n) complexity
 - Optimal ratio: $\beta = \sqrt{\epsilon(1-\epsilon)}$



Inferring algorithm: related work

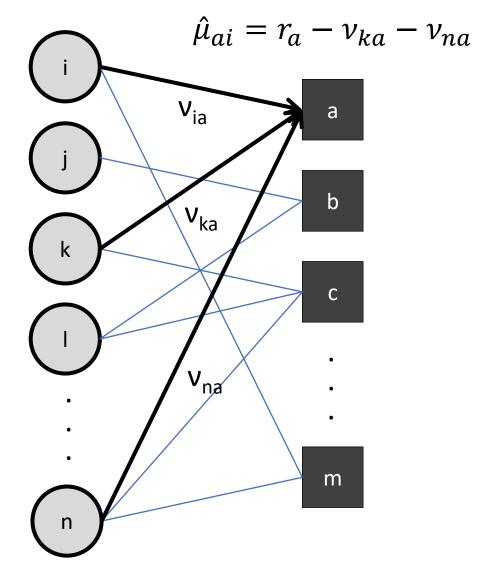
- Counter Braids
 - low complexity message passing decoding
- Our problem
 - v_{ia} : guess user i's preference on user side
 - μ_{ai} : guess user i's preference on article side



Inferring algorithm: message passing

- v_{ia} : passed to article node a
 - Initialize to 0
- Article node a infer user i's preference
 - based on other users in I(a)

$$\hat{\mu}_{ai}(t) = r_a - \sum_{j \in I(a), \, j \neq i} v_{ja}(t-1)$$



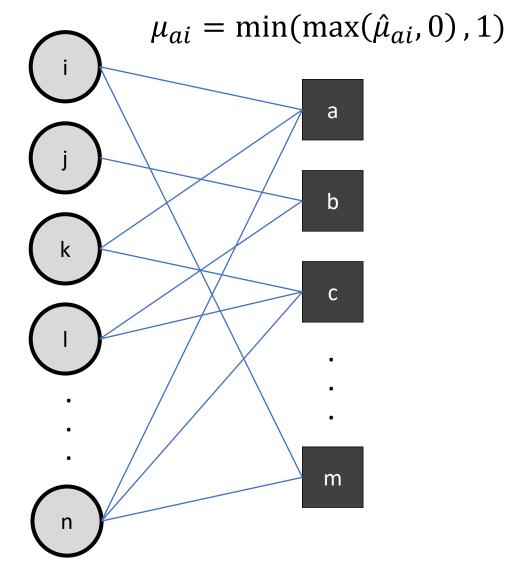
Inferring algorithm: message passing

- v_{ia} : passed to article node a
 - Initialize to 0
- Article node a infer user i's preference
 - based on other users in I(a)

$$\hat{\mu}_{ai}(t) = r_a - \sum_{j \in I(a), \, j \neq i} v_{ja}(t-1)$$

• Apply bounds

 $\mu_{ai} = \min(\max(\hat{\mu}_{ai}, 0), 1)$

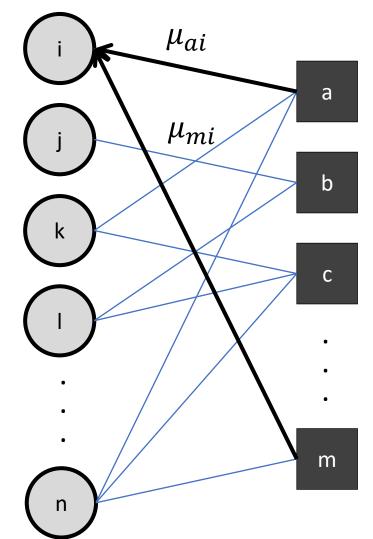


Inferring algorithm: message passing

- μ_{ai} : passed to user node i
- user node *i* infer its preference
 - based on articles in A(i)
 - Odd round is upper bound, even round is lower bound

$$v_{ia}(t) = \begin{cases} \min_{b \in A(i), \mu_{bi}(t)} & \text{if } t \text{ is odd,} \\ \max_{b \in A(i), \mu_{bi}(t)} & \text{if } t \text{ is even.} \end{cases}$$

 $v_{ia} = \min(\mu_{ai}, \mu_{mi})$



Push algorithm: Construct bipartite graph

- Degree distribution
 - Edge-perspective degree distribution

$$\lambda(x) = \sum_{k=1}^{l_{max}} \lambda_k x^{k-1} \qquad \rho(x) = \sum_{k=1}^{r_{max}} \rho_k x^{k-1}$$

• Average number of articles

$$\beta = \frac{m}{n} = \frac{l_{avg}}{r_{avg}} = \frac{\int_0^1 \rho(x) dx}{\int_0^1 \lambda(x) dx}$$

Error analysis: density evolution

• Degree distribution:

$$\lambda(x) = \sum_{k=1}^{l_{max}} \lambda_k x^{k-1} \qquad \rho(x) = \sum_{k=1}^{r_{max}} \rho_k x^{k-1}$$

• Article message error:

$$\sum_{k} \rho_k (1 - (1 - x_{t-1})^{k-1}) = 1 - \rho (1 - x_{t-1})$$

• User message:

$$\lambda[1-\rho(1-x_{t-1})]$$

1 .

- Projection
 - Odd round:

$$(1-\epsilon)\lambda[1-\rho(1-x_{t-1})]$$

11

- Even round:
- Two rounds:

$$\epsilon \lambda [1 - \rho(1 - x_{t-1})]$$

\1

$$f(\epsilon, x) = \epsilon \lambda \{1 - \rho [1 - (1 - \epsilon)\lambda(1 - \rho(1 - x))]\},$$

Prove of optimal beta

- Binary erasure channel
 - Error evolution $f(\epsilon, x) = \epsilon \lambda (1 \rho(1 x))$

• Capacity-achieving:
$$\hat{\lambda}_{\alpha}(x) \triangleq 1 - (1-x)^{\alpha} = \sum_{i=1}^{\infty} {\alpha \choose i} (-1)^{i-1} x^{i}, \quad \rho_{\alpha}(x) \triangleq x^{\frac{1}{\alpha}}$$

• Optimal ratio
$$\beta = \epsilon$$
: $\frac{N}{\alpha} \binom{\alpha}{N} (-1)^{N-1} = 1 - \epsilon$

- Our problem
 - Error evolution: $f(\epsilon, x) = \epsilon \lambda \{1 \rho [1 (1 \epsilon)\lambda(1 \rho(1 x))]\}$

Prove of optimal beta

- Binary erasure channel
 - Error evolution: $f(\epsilon, x) = \epsilon \lambda (1 \rho(1 x))$
- Our problem
 - Error evolution: $f(\epsilon, x) = \epsilon \lambda \{1 \rho [1 (1 \epsilon)\lambda(1 \rho(1 x))]\}$
 - Optimal ratio: $\beta = \sqrt{\epsilon(1-\epsilon)}$

Phase transition

- $\epsilon \leq \epsilon^*$, user preference can be recovered
- $\epsilon > \epsilon^*$, some user preference cannot be inferred
- Lack of monotonicity:

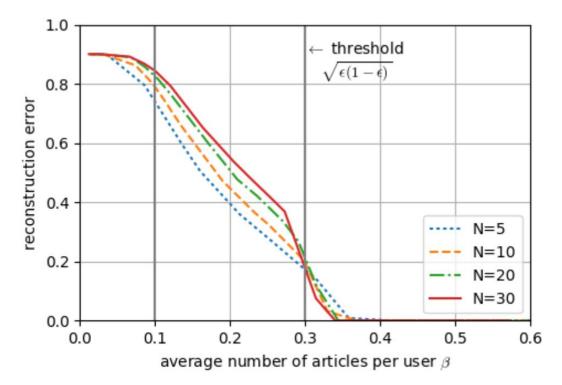
$$f(\epsilon, x) = \epsilon \lambda \{1 - \rho [1 - (1 - \epsilon)\lambda(1 - \rho(1 - x))]\}$$

• Capacity achieving graph:

$$\lim_{N \to \infty} f^{(N)}(\epsilon, x) = \frac{\epsilon(1 - \epsilon)}{\epsilon^*(1 - \epsilon^*)} x$$

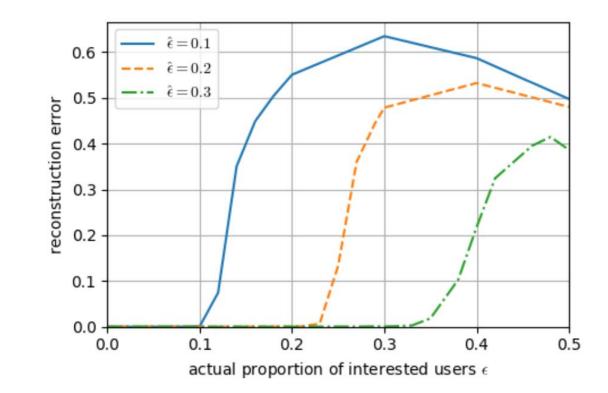
Performance of capacity achieving graph

- Setup
 - N=5, 10, 20, 30
 - 10000 users
 - Proportion of interested users: 0.1
- Optimality
 - Converges at $\beta = 0.34$
 - Optimal ratio: $\beta = \sqrt{\epsilon(1-\epsilon)} = 0.3$



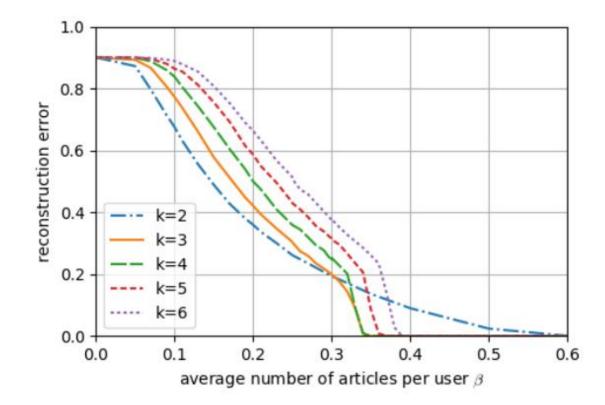
Phase transition in capacity achieving graph

- Setup
 - $\hat{\epsilon}$ = 0.1, 0.2, 0.3
 - N = 30
- Phase transition



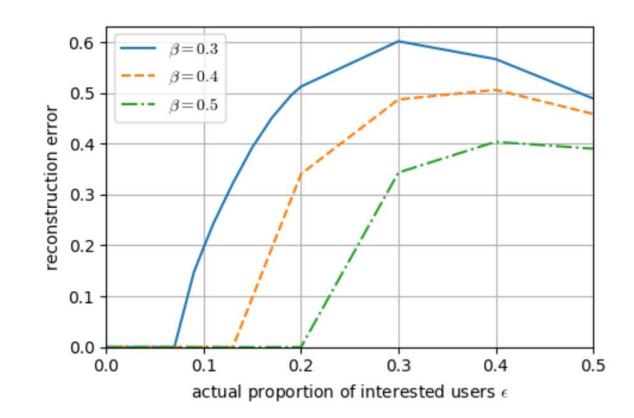
Performance of k-regular graph

- Setup
 - k=2, 3, 4, 5, 6
 - 10000 users
 - Proportion of interested users: 0.1
- Best performance with k = 3, 4
 - Converges at $\beta = 0.34$
 - Optimal ratio: $\beta = \sqrt{\epsilon(1-\epsilon)} = 0.3$
 - Practically good



Phase transition in k-regular graph

- Setup
 - β = 0.1, 0.2, 0.3
 - k = 3
- Phase transition
 - Estimate ϵ
 - Select β



Conclusion

- Pushing algorithm and inference algorithm
- Optimal ratio $\beta = \sqrt{\epsilon(1-\epsilon)}$
- Phase transition

Thanks!