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Data Privacy

 Social media platforms
* |dentity, preference
* Optimize algorithm

e Data security threats
e Addiction, abuse

Adobe. Date: October 2013. Impact: 153 million user
records. ...

Adult Friend Finder. Date: October 2016. Impact: 412.2
million accounts. ...

Canva. Date: May 2019. ...

eBay. Date: May 2014. ...

Equifax. Date: July 29, 2017. ...

Dubsmash. Date: December 2018. ...

Heartland Payment Systems. Date: March 2008. ...
LinkedIn. Date: 2012 (and 2016)



Traditional privacy protection

* Aggregation
* No storage of sensitive individual record
* Total reads / reviews

106,536 views * Apr 1, 2020



Traditional privacy protection

* Aggregation

* High degree of centralization
* Actively choose how to aggregate
* Reversable: recover user preference



Recover preferences: problem

Users Articles Users Articles Users Articles

* Content pushing
* Push, read, aggregate

* Inferring

* Recover user preference
from aggregated reads

Provider only  Public



Recover preferences: problem

* Goal
* Small number of articles pushed to user
* Inference algorithm is of low complexity
* As few articles as possible



Recover preferences: formulation

* marticles:a=1, 2, ..., m

*nusers:i=1,2,..,n (@) = {is, is. i
* Preferences: p; € {0,1} o
* € are interested (82) = iz i}
* a pushed to a set of users I(a) o=l L3
* Userviewifp; =1.
* Aggregate reads 1, = Xiey(q) Pi
* Goal:
(@) = {is, in}

* Recover p;

* Minimize 3 =—




Inferring algorithm: related work

* Compressing sensing
* 0(n?®) complexity
* Counter Braids
* 0(n) complexity
 Optimal ratio: B = 2+/e
* Our problem
* 0(n) complexity

e Optimal ratio: B = +/e(1—¢€)
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Inferring algorithm: related work

e Counter Braids
* low complexity message passing decoding

* Our problem
* V;,: guess user i’s preference on user side
* U,;: guess user i’s preference on article side




Inferring algorithm: message passing

* V;,: passed to article node a
* Initialize to O

* Article node a infer user i’s preference
* based on other usersin I(a)

fai(t) =rq — Zjel'(a},j;ti Vjﬂ(t - 1)




Inferring algorithm: message passing
Hqi = min(max(fg;, 0),1)

* V;,: passed to article node a
* Initialize to O

* Article node a infer user i’s preference
* based on other users in I(a)

flai(t) =ra — Ejef(a),jii Vjﬂ(t - 1)
* Apply bounds
Hqi = min(max (g, 0),1)



Inferring algorithm: message passing

Via = min(ﬂaiuumi)

* U,; : passed to user node i

e user node i infer its preference
* based on articles in A(i)
* Odd round is upper bound, even round is

lower bound
. _ ) mingea;, ppi(t)  if tis odd,
Via(t) = o
maxpea(j), Upi(t) if t is even.




Push algorithm: Construct bipartite graph

* Degree distribution
* Edge-perspective degree distribution

r
Imax max

Alx) = Z ,lkxk_l p(x) = Z kak_l
k=1 k=1

* Average number of articles

1
ﬁ _ m _ Ia'ug _ fl:] p(x)dx
N Tavg fﬂl A(x)dx |




Error analysis: density evolution

Lax Fmax

* Degree distribution:  A(x) = Z Ak p(x) = Z prex*!
k=1 k=1

* Article message error: Zpk(l —(1=x—)fY = 1-p(1-x:-1)
k
* User message: A1 = p(1 = x-1)]
* Projection
* Odd round: (1—-e€e)A[1 - p(1 — x¢-1)]
* Even round: eA[1 — p(1 — x;-1)]

« Two rounds: fle,x) =el{1—p[1—-(1-€)A(1 - p(1-x))]}.



Prove of optimal beta

* Binary erasure channel
* Error evolution f(e,x) = eA(1 - p(1 - x))
« Capacity-achieving: Ay (x)21-(1-x)%= Z (?)(—l)i_lx", pa(x) 2 xé
N(a

* Optimal ratio f = €: — N

)(—1)”‘1 =1-¢
* Our problem

* Error evolution: f(e,x) = €M1 -p[1-(1-€)A1 - p(1-x))]}



Prove of optimal beta

* Binary erasure channel

* Error evolution: f(e,x) = eA(1 - P(l — X))

* Our problem

* Error evolution:  f(e,x) = eA{l1 — p[1 - (1 -€)A(1 - p(1—x))]}.

* Optimal ratio: B = \/5(1 —€)



Phase transition

¢ < €7, user preference can be recovered
* € > €, some user preference cannot be inferred
* Lack of monotonicity:

fle,x) = eM1— p[1— (1 - )AL — p(1 — )]}

e Capacity achieving graph:
1 —_
lim FV(e, x) = e(1-¢€)

X
N —o0 E*(l—E*)




Performance of capacity achieving graph

* SEtUp 1.0
+ N=5, 10, 20, 30 o=
0.8 A
* 10000 users 5
* Proportion of interested users: 0.1 5 o6+
* Optimality g 04
_ S |l ISNALl | e N=5
* Convergesat f = 0.34 o N=10
* Optimal ratio: = \/e(1 —€) = 0.3 \ I
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average number of articles per user 3



Phase transition in capacity achieving graph

* Setup
« ¢=0.1,0.2,0.3 il |
* N=30 5 03 =
* Phase transition H >4
é 0.3
g 0.2
0.1
0'oo.o 0.1 02 OS-A/- 0.4 0.5

actual proportion of interested users ¢



Performance of k-regular graph

* Setup
e k=2,3,4,5,6
* 10000 users

* Proportion of interested users: 0.1

* Best performance with k =3, 4

* Convergesatf = 0.34

* Optimal ratio: = \/e(1 —€) = 0.3

* Practically good

reconstruction error
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Phase transition in k-regular graph

* Setup
« $=0.1,0.2,0.3
e k=3

 Phase transition

e Estimate €
* Select 3

reconstruction error
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Conclusion

* Pushing algorithm and inference algorithm
e Optimal ratio B = +ve(l-e¢)
* Phase transition




Thanks!



