On the Capacity Region of Bipartite and Tripartite Entanglement Switching

Gayane Vardoyan*, Saikat Guha†,

Philippe Nain[‡], and Don Towsley^{*}

*UMass, Amherst †University of Arizona ‡Inria

Performance 2020

Example of bipartite entanglement (Bell pair)

*See first few slides of Performance 2020 talk "On the Exact Analysis of a Quantum Switch" for brief background on quantum communication and quantum entanglement switching

Talk Outline

- Problem statement
- Switch description
- Analysis
- Results
- Summary & Future Directions

Entanglement Distribution

- Teleportation (consumes one Bell pair)
- Use directly, e.g., in E91 or similar protocols

GHZ States

n-partite GHZ state
$$|GHZ\rangle = \frac{|0\rangle^{\odot n} + |1\rangle^{\odot n}}{\sqrt{2}}$$

Used in multiparty QKD, secret sharing, quantum sensing, multipartite generalization of superdense coding...

Bi-, Tripartite Switching

k=5 links *n*=3 or 2

Q2: Are there switching policies better than TDM?

Q2: Are there switching policies better than TDM?

Switch Description

Switch is equipped with quantum memories (buffer)

allocated to each link:

B+1 quantum memories

- *B* long-coherence
- 1 short-coherence

Switch can perform projective

Quantum

Type

unoccupied,

long-term

occupied,

long-term

B=1

Switch Description

Qubits from newlygenerated Bell pairs are initially stored in "short-term" memories.

Must either use qubit or store in long-term memory; else, it is lost.

qubits stored in "long-term" memory ("stored entanglement")

Quantum

memory

Type

unoccupied,

long-term

occupied,

long-term

short-term

Switch Description

Switch serves entangled states to *k* users

- Bell pairs over individual links
- switch performs either
 a BSM or a GHZ
 measurement,
 resulting in end-to-end
 entanglement

Modeling Link-Level Entanglement Generation

link-level entanglement generation

entangled states generated according to Poisson process

 μ : successful entanglement generation rate

- 1. link-level entanglement generation
- swapping, according to switching policy

- perform a —
- store in memory
- discard

- perform a —
- store in memory
- discard

- perform a —
- store in memory
- discard

coherence time is an exponential r.v. with mean $1/\alpha$

- perform a —
- store in memory
- discard

newly-generated entanglement

- perform a —
- store in memory
- discard

newly-generated entanglement

- perform a —
- store in memory
- discard

- perform a —
- store in memory
- discard

- perform a
- store in memory
- discard

- perform a —
- store in memory
- discard

- perform a
- store in memory
- discard
- wait

- perform a —
- store in memory
- discard
- wait

- perform a —
- store in memory
- discard
- wait

The Model

Recall:

Link-level entanglement generation: Poisson process

Successful link-level entanglement generation rate μ

Coherence time: exponential r.v.

Decoherence rate α

Interested in **capacity** of switch

- \rightarrow any set of n=2/3 of users want to share an entangled state
- → Bell pairs used as soon as there are enough to generate an *n*-partite entanglement

Can model using a continuous-time Markov chain.

The Model: *B*=1 state space

Bell pairs used as soon as there are enough for a swap

→ up to 2 links will store Bell pairs

The Model: B=1

Q2: Are there better policies than TDM?

k=3, B=1, no decoherence

B=1, no decoherence

Effects of Decoherence, B=13 links $\mu = 1$ 10 links

Similar results for B=2

Effects of Buffer Size

- 1. Advantages of extra buffer diminish with k
- 2. C_3 benefits more from extra buffer than C_2

Summary & Future Directions

- Bipartite/tripartite entanglement switching problem
- Modeled as a CTMC
- Explored randomized switching policies
 - There is always a better policy than TDM
 - Advantages diminish as number of users grows
 - Analytical proofs for buffer-size one systems
- Extensions
 - Non-identical links
 - Non-unit state fidelities
 - Larger buffer sizes
- User requests & optimality of scheduling policies

Thank You!

Questions?

Gayane Vardoyan UMass Amherst gvardoyan@cs.umass.edu

Saikat Guha University of Arizona saikat@optics.arizona.edu

Philippe Nain Inria philippe.nain@inria.fr

Don Towsley UMass Amherst towsley@cs.umass.edu