# Incentive Analysis of Bitcoin-NG, Revisited

Jianyu Niu, Ziyu Wang\*, Fangyu Gai, and Chen Feng

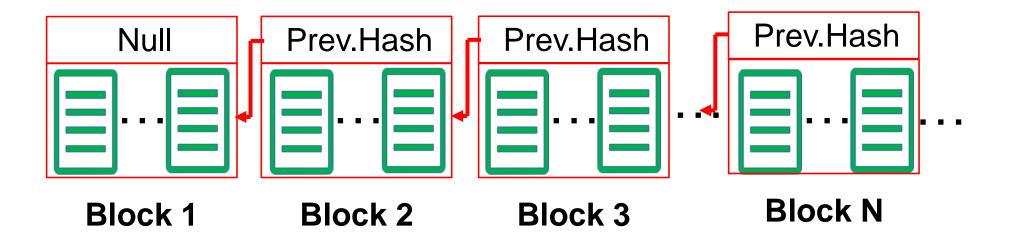
School of Engineering, University of British Columbia (Okanagan Campus)

\*School of Cyber Science and Technology, Beihang University

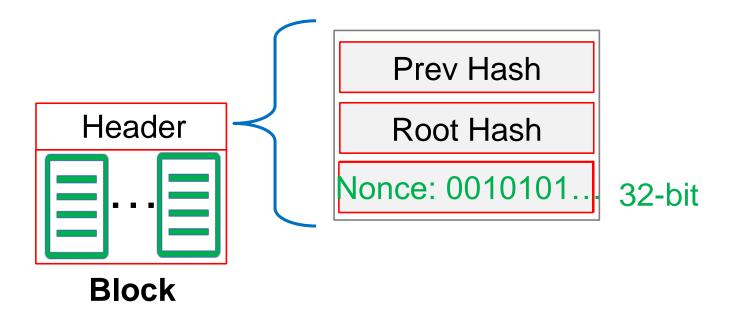


#### Blockchain

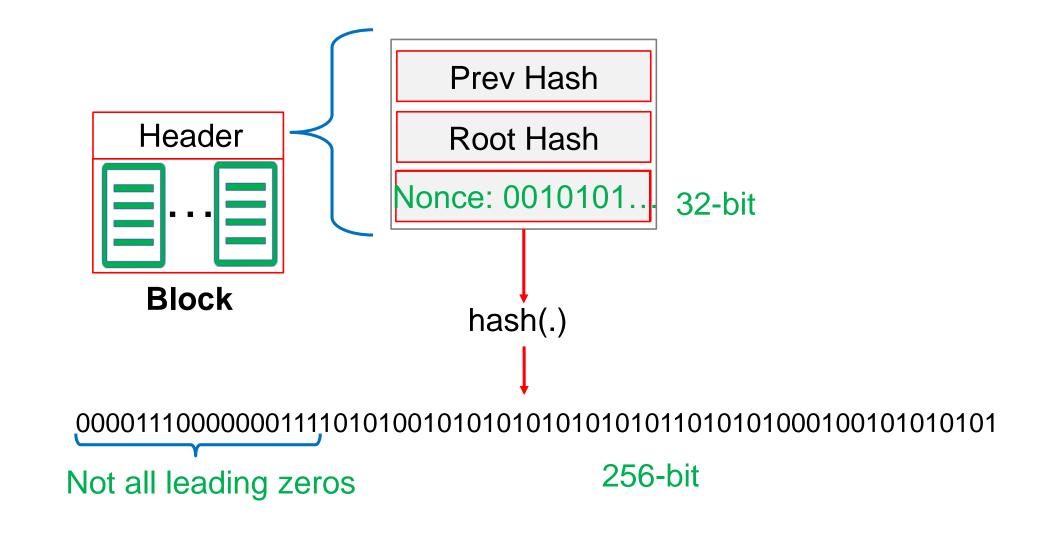
In 2008, Nakamoto invented blockchain and Bitcoin



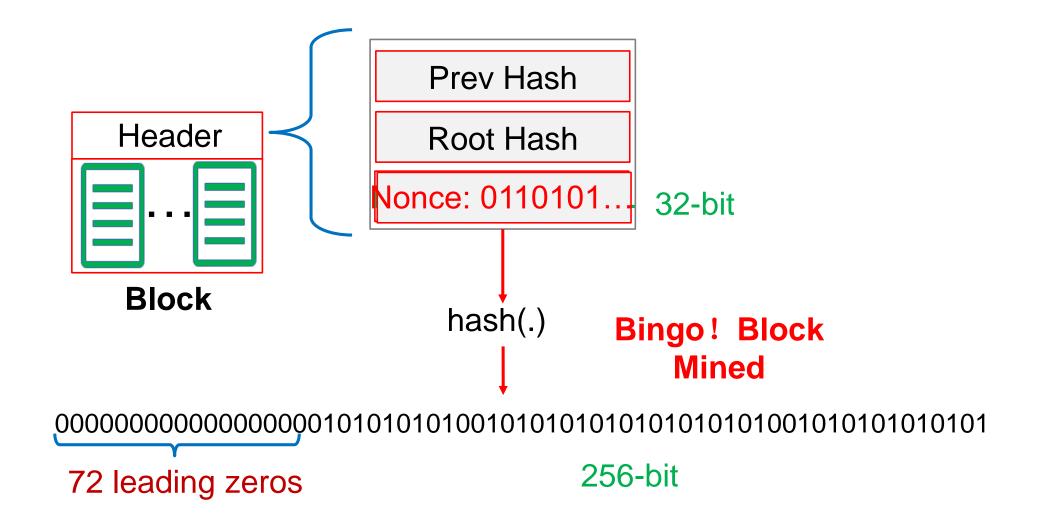
#### **Proof-of-Work**

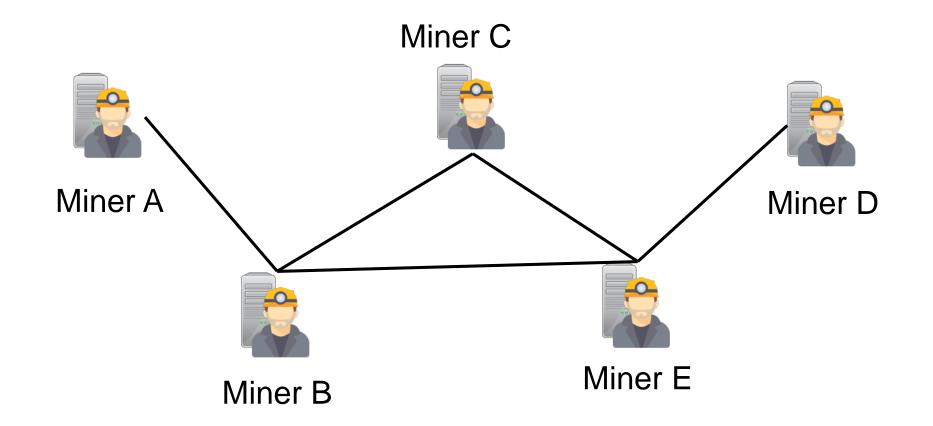


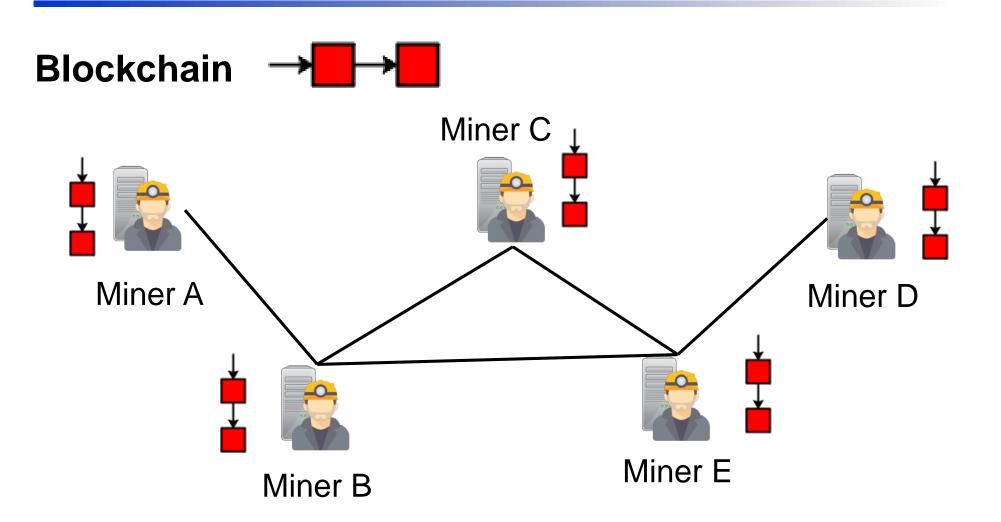
#### **Proof-of-Work**

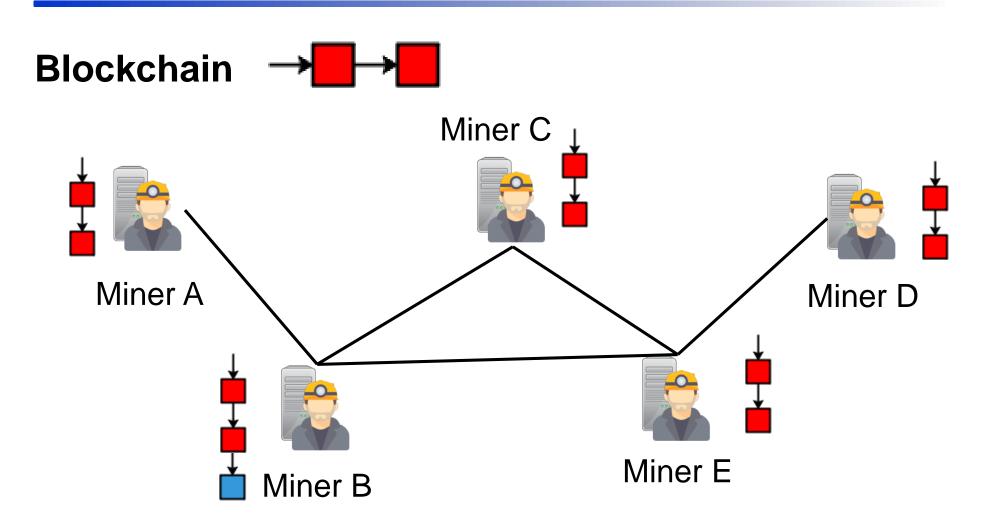


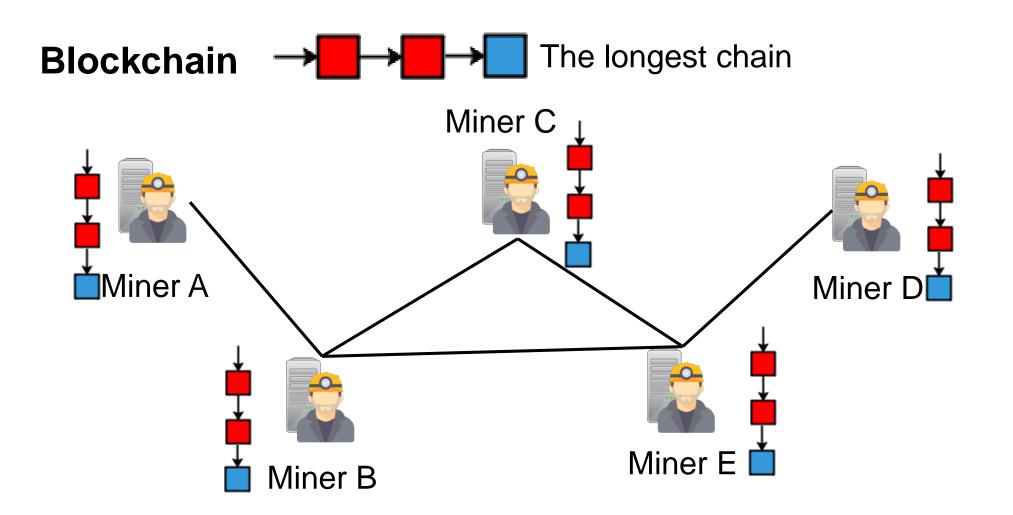
#### **Proof-of-Work**











## **Incentive for Mining**

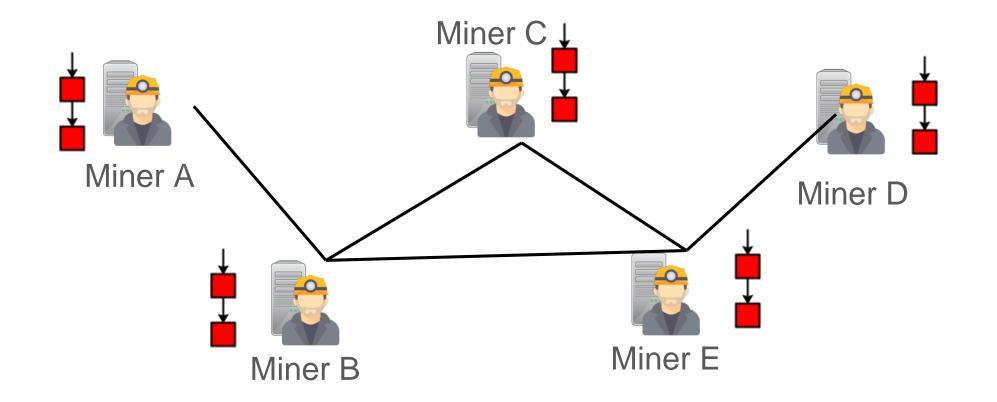
Block rewardTransaction fees

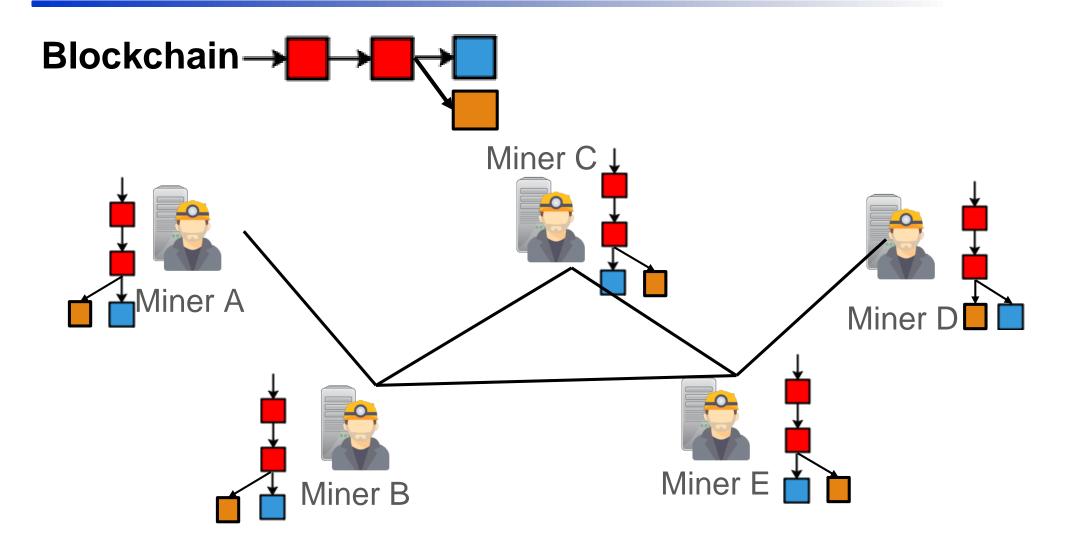


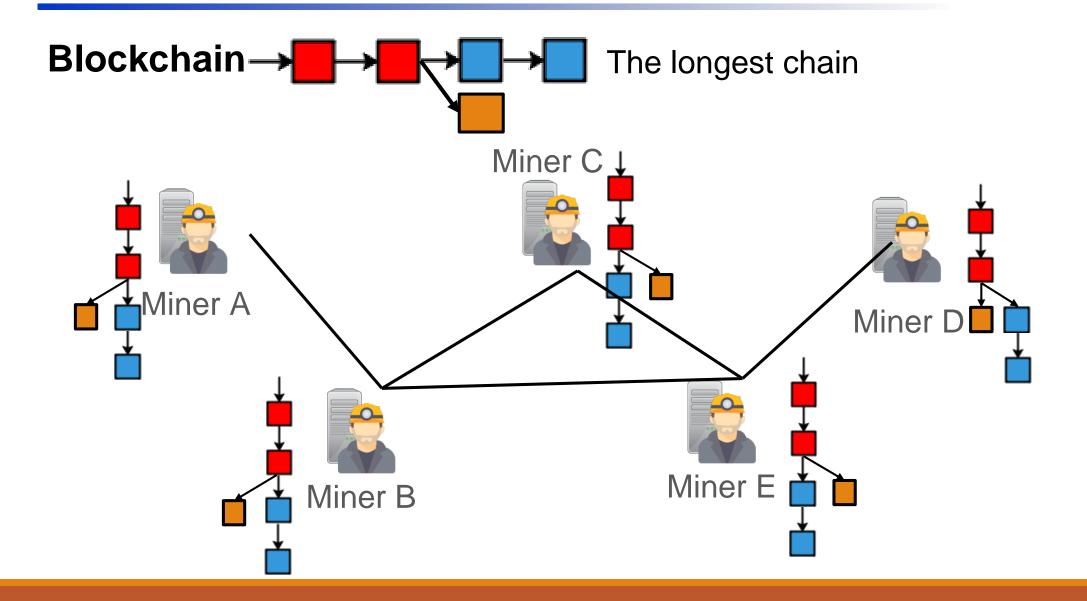
#### Fairness: wins proportional to computation power

Low throughput ~7 txs per second (Blocks are mined every 10 minutes)

# Blockchain→

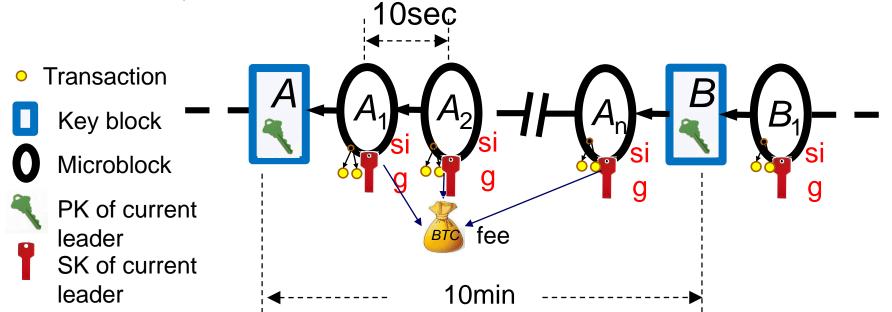






#### **Bitcoin-NG (Next Generation)**

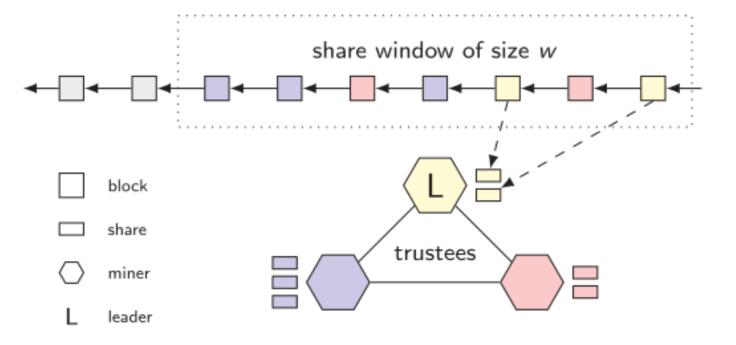
- Bitcoin-NG: A scalable blockchain protocol (NSDI 2016)
- Bitcoin-NG elects a leader by PoW (Key block creator), who can sign several microblocks efficiently (transactions are in microblocks).



Bitcoin-NG decouples leader election with transaction ordering

#### **Next-Generation Blockchains**

■ Byzcoin (Usenix Security 2016)

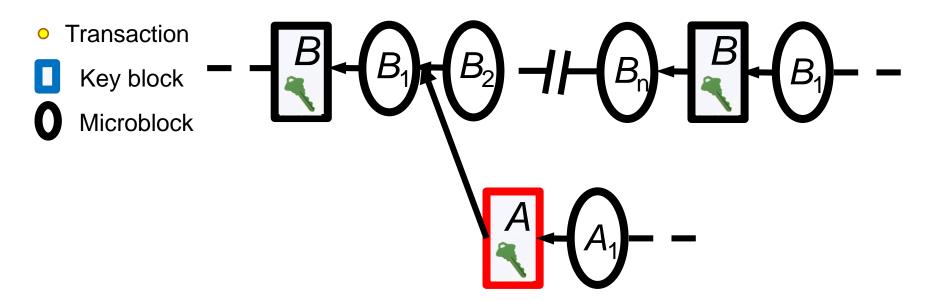


■ Prism (CCS 2019), Hybrid Consensus (DISC 2017)

#### **Bitcoin-NG Incentives**

#### Longest chain extension attack

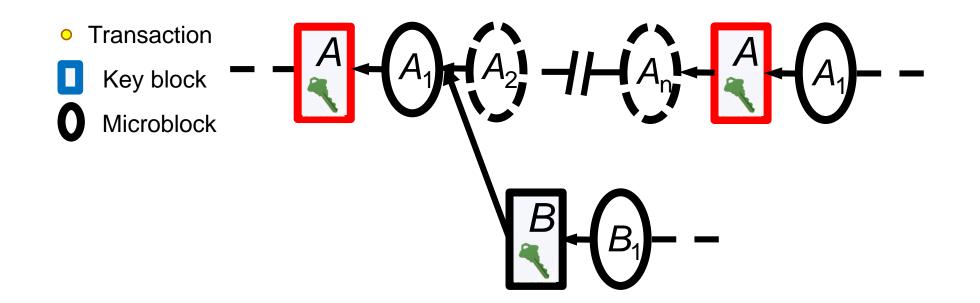
- The adversary rejects some (or all) microblocks and mines directly on the last accepted block;
- Incentivized if transaction fees in microblocks go primarily to the first key-block owner.



#### **Bitcoin-NG Incentives**

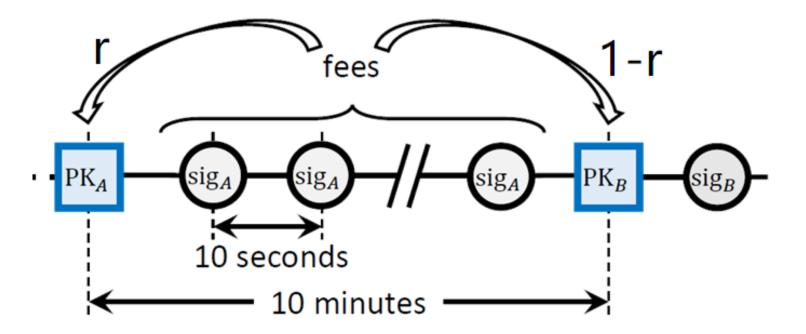
#### **Transaction inclusion attack**

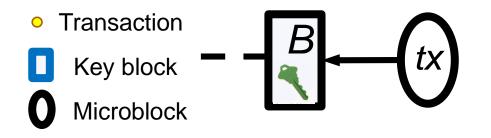
- The adversary keeps the last several microblocks private;
- Incentivized if transaction fees in microblocks go primarily to the second key-block owner.

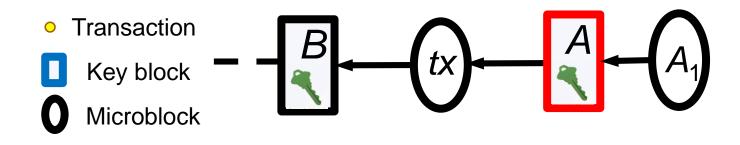


#### **Bitcoin-NG Incentives**

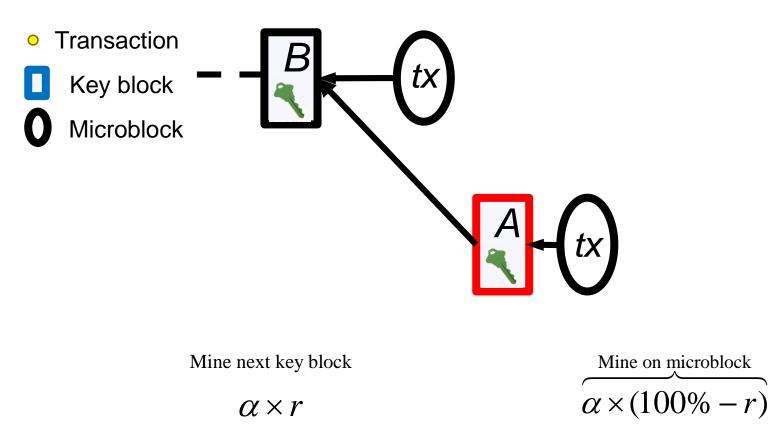
The transaction fee distributed rate r

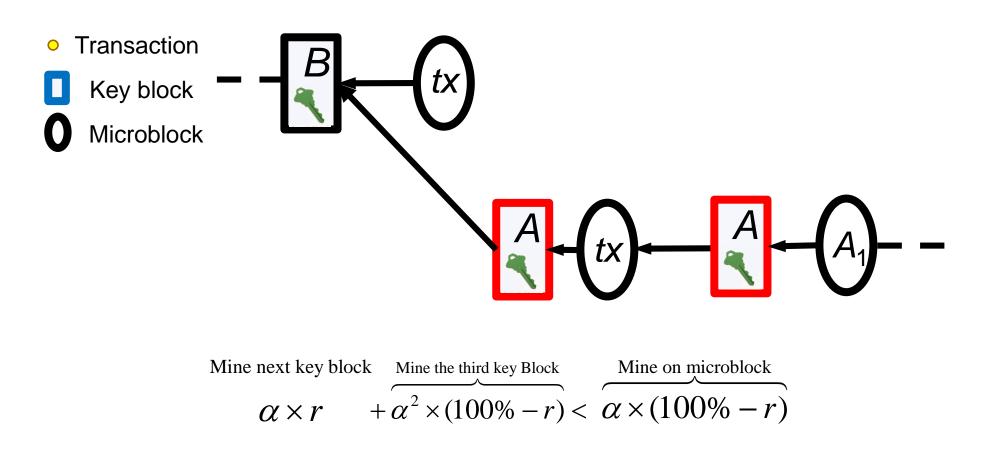






 $\underbrace{\alpha \times (100\% - r)}^{\text{Mine on microblock}}$ 





#### Resisting longest chain extension attack

$$\underbrace{\alpha \times r}_{\alpha \times r} + \underbrace{\alpha^2 \times (100\% - r)}_{\alpha \times (100\% - r)} < \underbrace{\alpha \times (100\% - r)}_{\alpha \times (100\% - r)}$$

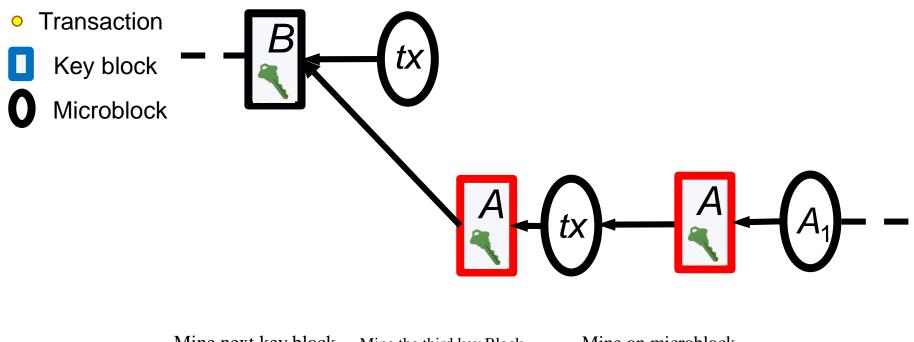
#### Resisting transaction inclusion attack

$$\underbrace{\alpha \times 100\%}_{\text{win 100\%}} + \underbrace{(1 - \alpha) \times \alpha \times (100\% - r)}_{\text{Lose 100\%, but mine after txn}} < r$$

The transaction fee distributed rate r should be:

$$1 - \frac{1 - \alpha}{1 + \alpha - \alpha^2} < r < \frac{1 - \alpha}{2 - \alpha}$$

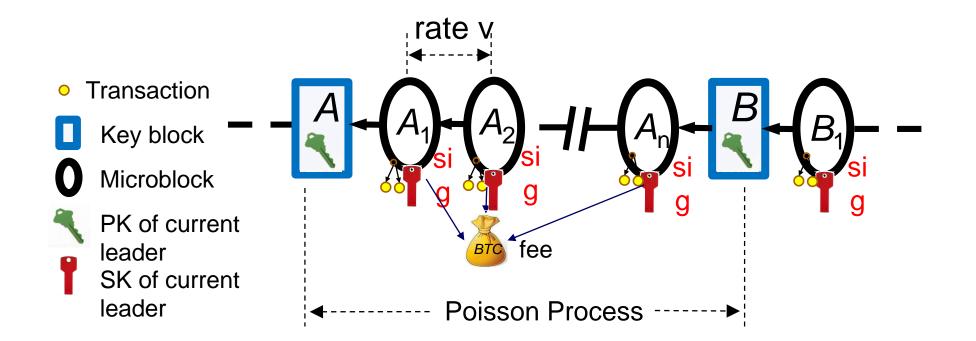
#### Limitations



| Mine next key block | Mine the third key Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mine on microblock          |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                     | $\frac{1}{2} \frac{1}{2} \frac{1}$ | (1000/m)                    |
| $\alpha \times r$   | $+\alpha^{2} \times (100\% - r) <$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\alpha \times (100\% - r)$ |

Without considering the network capacity

#### **Our Analysis Model**

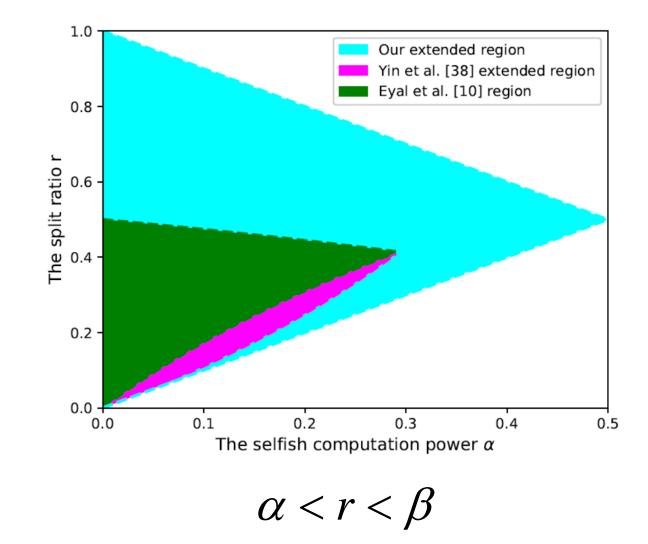


#### Incentive Analysis with Network Capacity

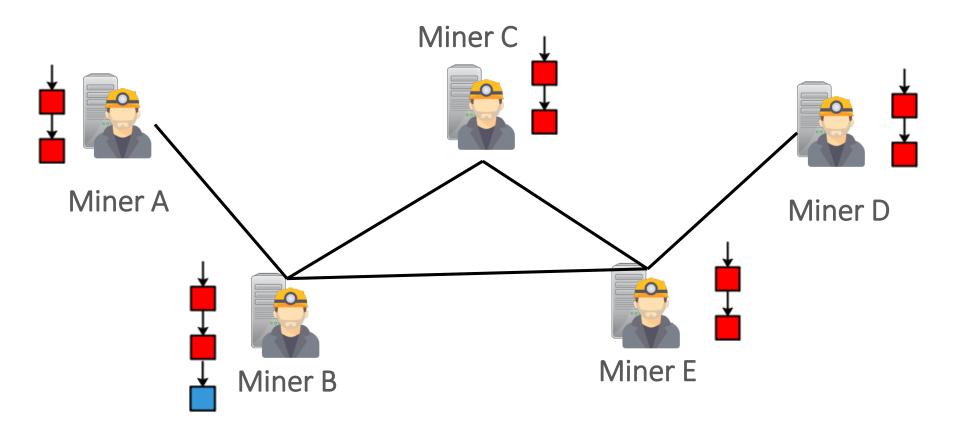
Consider the revenue for the adversary in a time interval t

$$u = \lim_{t \to \infty} \frac{r_a(t) + t_a(t)}{r_a(t) + r_h(t) + t_a(t) + t_h(t)}$$

#### Incentive Analysis with Network Capacity



## **Key Block Selfish Mining**



If selfish miners control more than 23.21% of computation power, it obtain a revenue larger than their fair share.

#### **MDP Model**

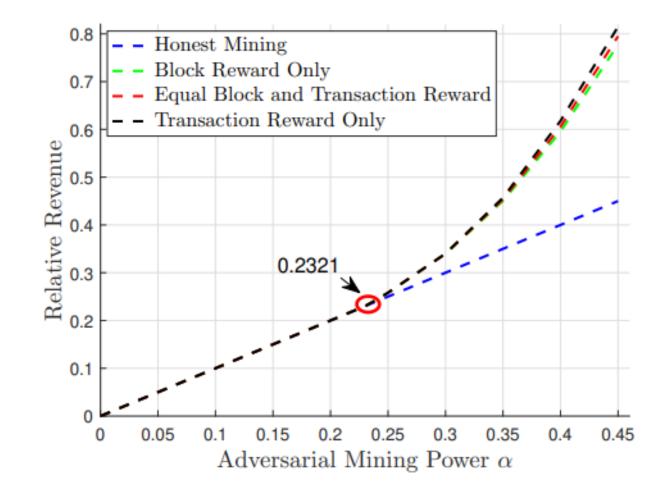
| State × Action                                                                                                            | State                                                                              | Probability            | Reward                                                    | Condition      |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------|----------------|
| $(l_a, l_h, \cdot, S_h), adopt$                                                                                           | $(1, 0, noTie, H_{in})$                                                            | α                      | $(l_h, l_h, 0, 0)$                                        |                |
| $(l_a, l_h, \cdot, S_p)$ , adopt                                                                                          | $(0, 1, \text{noTie}, H_{\text{in}})$                                              | $1 - \alpha$           | $(l_h, l_h - 1 + (1 - r), 0, r)$                          | _              |
| $\frac{(l_a, l_h, \cdot, \{H_{in}, H_{ex}\}),  adopt}{(l_a, l_h, \cdot, S_h),  adoptE}$                                   |                                                                                    |                        | $\frac{(l_h, l_h - 1, 0, 0)}{(l_h, l_h, 0, 0)}$           |                |
| $(l_a, l_h, \cdot, S_h), \text{ adopte}$<br>$(l_a, l_h, \cdot, S_p), \text{ adopte}$                                      | $(1,0,noTie,H_{ex})$                                                               | α                      | $\frac{(l_h, l_h, 0, 0)}{(l_h, l_h - 1 + (1 - r), 0, r)}$ | _              |
| $\frac{(l_a, l_h, \cdot, \{H_{in}, H_{ex}\}), \text{ adopt } L}{(l_a, l_h, \cdot, \{H_{in}, H_{ex}\}), \text{ adopt } L}$ | $(0, 1, noTie, H_{ex})$                                                            | $1 - \alpha$           | $(l_h, l_h - 1, 0, 0)$                                    |                |
| $(l_a, l_h, \cdot, H_{ex})$ , override                                                                                    | $(l_a - l_h, 0, \text{noTie}, S_p)$                                                | α                      | $(0,0,l_h+1,l_h+1)$                                       |                |
| $(l_a, l_h, \cdot, H_{in})$ , override                                                                                    | $(l_a - l_h - 1, 1, \text{noTie}, S_p)$                                            | $1 - \alpha$           | $(0, r, l_h + 1, l_h + (1 - r))$                          | $l_a > l_h$    |
| $(l_a, l_h, \cdot, \{S_p, S_h\}),$ override                                                                               | $(\iota_a - \iota_h - 1, 1, norme, \mathcal{S}_p)$                                 | 1 0                    | $(0,0,l_h+1,l_h)$                                         |                |
| $(l_a, l_h, \cdot, H_{\text{ex}})$ , overrideH                                                                            | $(l_a - l_h, 0, \text{noTie}, S_h)$                                                | $\alpha$               | $(0,0,l_h+1,l_h+1)$                                       |                |
| $\frac{(l_a, l_h, \cdot, H_{in}), \text{ overrideH}}{(l_a, l_h, \cdot, \{S_p, S_h\}), \text{ overrideH}}$                 | $(l_a - l_h - 1, 1, \operatorname{noTie}, S_h)$                                    | $1 - \alpha$           | $\frac{(0,r,l_h+1,l_h+(1-r))}{(0,0,l_h+1,l_h)}$           | $l_a > l_h$    |
| $(l_a, l_h, noTie, \cdot), wait$                                                                                          | $(l_a + 1, l_h, noTie, *)$                                                         | α                      |                                                           |                |
|                                                                                                                           | $(l_a, l_h + 1, \text{noTie}, *)$                                                  | $1 - \alpha$           | (0, 0, 0, 0)                                              | _              |
| $(l_a, l_h, noTie, H_{in})$ , match                                                                                       | $(l_a+1, l_h, tie, H_{in})$                                                        | α                      | (0,0,0,0)                                                 |                |
| $(l_a, l_h, \text{tie}, H_{\text{in}}),$ wait                                                                             | $(l_a - l_h, 1, \text{noTie}, S_p)$                                                | $\gamma(1-\alpha)$     | $(0, r, l_h, l_h - 1 + (1 - r))$                          | $la \ge l_h$   |
|                                                                                                                           | $(l_a, l_h + 1, \text{noTie}, H_{\text{in}})$                                      | $(1-\gamma)(1-\alpha)$ | (0,0,0,0)<br>(0,0,0,0)                                    |                |
| $(l_a, l_h, noTie, H_{\sf ex}), {\sf match}$                                                                              | $(l_a + 1, l_h, \text{tie}, H_{\text{ex}})$<br>$(l_a - l_h, 1, \text{noTie}, S_p)$ | $\gamma(1-\alpha)$     | (0, 0, 0, 0)<br>$(0, 0, l_h, l_h - 1)$                    | $la \ge l_h$   |
| $(l_a, l_h, tie, H_{ex}), wait$                                                                                           | $(l_a, l_h + 1, noTie, H_{ex})$                                                    | $(1-\gamma)(1-\alpha)$ | (0,0,0,0,0)                                               | $u \ge u_h$    |
| $(l_a, l_h, \text{noTie}, \{S_p, S_h\}), \text{ match}$                                                                   | $(l_a + 1, l_h, tie, *)$                                                           | α                      | (0, 0, 0, 0)                                              |                |
|                                                                                                                           | $(l_a - l_h, 1, noTie, S_p)$                                                       | $\gamma(1-lpha)$       | $(0, 0, l_h, l_h)$                                        | $la \ge l_h$   |
| $(l_a, l_h, tie, \{S_p, S_h\}), wait$                                                                                     | $(l_a, l_h + 1, noTie, *)$                                                         | $(1-\gamma)(1-\alpha)$ | (0, 0, 0, 0)                                              |                |
| $(l_a, l_h, noTie, H_{in}), matchH$                                                                                       | $(l_a+1, l_h, tie', H_{in})$                                                       | $\alpha$               | (0, 0, 0, 0)                                              |                |
| $(l_a, l_h, tie', H_{in})$ , wait                                                                                         | $(l_a - l_h, 1, \text{noTie}, S_h)$                                                | $\gamma(1-\alpha)$     | $(0, r, l_h, l_h - 1 + (1 - r))$                          | $la \ge l_h$   |
|                                                                                                                           | $\frac{(l_a, l_h + 1, noTie, H_{in})}{(l_a + 1, l_h, tie', H_{ex})}$               | $(1-\gamma)(1-\alpha)$ | (0, 0, 0, 0)<br>(0, 0, 0, 0)                              |                |
| $(l_a, l_h, noTie, H_{ex}), matchH$                                                                                       | $(l_a - l_h, 1, \operatorname{noTie}, S_h)$                                        | $\gamma(1-\alpha)$     | (0, 0, 0, 0, 0)<br>$(0, 0, l_h, l_h - 1)$                 | $l_a \ge l_h$  |
| $(l_a, l_h, tie', H_{ex}), wait$                                                                                          | $(l_a, l_h + 1, \text{noTie}, H_{\text{ex}})$                                      | $(1-\gamma)(1-\alpha)$ | (0,0,0,0)                                                 | -u <u>-</u> -n |
| $(l_a, l_h, noTie, \{S_p, S_h\}), matchH$                                                                                 | $(l_a + 1, l_h, tie', *)$                                                          | α                      | (0, 0, 0, 0)                                              |                |
| $(l_a, l_h, \text{tie}', \{S_p, S_h\}),$ wait                                                                             | $(l_a - l_h, 1, noTie, S_h)$                                                       | $\gamma(1-\alpha)$     | $(0, 0, l_h, l_h)$                                        | $l_a \ge l_h$  |
|                                                                                                                           | $(l_a, l_h + 1, noTie, *)$                                                         | $(1-\gamma)(1-\alpha)$ | (0, 0, 0, 0)                                              |                |
| $(l_a, l_h, \text{tie}', \cdot), \text{ revert}$                                                                          | $(l_a, l_h, tie, *)$                                                               |                        | (0, 0, 0, 0)                                              | -              |
| $(l_a, l_h, \cdot, S_h)$ , revert                                                                                         | $(l_a, l_h, *, S_p)$                                                               | 1                      | (0, 0, 0, 0)<br>(0, 0, 0, 0)                              | $l_h = 0$      |
| $(l_a, l_h, \cdot, H_{ex}), revert$                                                                                       | $(l_a, l_h, *, H_{in})$                                                            | 1                      | (0, 0, 0, 0)                                              | $l_a = 0$      |

 TABLE I

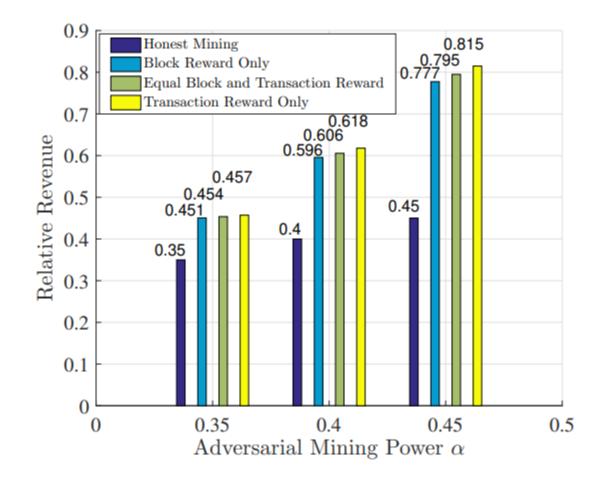
 State transition and reward matrices for the optimal selfish mining.

\* denotes the state element remains the same in the state transition.

#### **Joint Incentive Analysis**



#### **Joint Incentive Analysis**





# Thank you!