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The Basics: Quantum Bits

- qubit: quantum analogue of a bit
- represented by a two-level QM system
- e.g., photon polarization, electron spin
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The Basics: Entanglement

Two or more qubits are said to be entangled when
the state of one cannot be described independently
from the state of the other(s).

Example: a Bell state, single most important resource for
guantum communication
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Quantum Key Distribution: the E91 protocol

Goal: create One-Time Pad - only provably
secure means of encryption
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using statistical methods
(Bell-type inequalities)
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Transporting a Quantum State

fiber loss coefficient

P(photon makes it to receiver) ~ o — @ L<——fiber length

longer channel = higher probability of loss



In a classical network...

clean, strong
signal

On a quantum channel...
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A simple quantum network
A Swap

longerBERAES Bell pair, 104105 +114 (15

link-level entanglement V2

- Teleportation (consumes one Bell pair)
- Use directly, e.g., in E91 or similar protocols



A simple quantum network
_A_ Swap may fail

Bell pair generation
requires sending photons

P(successful link-level entanglement) ~ e—aL/2



A Quantum Network
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Switch Description

@

Quantum Current

. . memor state
Users do not limit Y

performance @® unoccupied
. occupied
Switch is equipped Bell pairs are stored

with infinite number
of noiseless quantum
memories (buffer)

Switch can perform Switch capable of
projective — A~ classical communication
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Switch Operation

2 Switch serves entangled
| states to k users

1. Bell pairs over
individual links

2. switch performs a
swapping operation,
resulting in end-to-

| end Bell state for a

I pair of users




Modeling Link-Level Entanglement Generation

1. link-level entanglement

generation
- assume links are
identical (equal length)
- every 7 seconds, all
links attempt
entanglement
generation

p : successful entanglement generation rate
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Switch Operation

1. link-level entanglement
generation

2. swapping, according to
user demands and



Switch Operation: beginning of time slot 1

- perform a —E=

- store in memory

- walit
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Switch Operation: time slot 1, cntd.
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Switch Operation: time slot 1, cntd.

- perform a —E=

- store In memory

- wait
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Switch Operation: beginning of time slot 2
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Switch Operation: beginning of time slot 3
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Switch Operation: beginning of time slot 3

- perform a —-A—

- store in memory
- wait

"All quantum states
assumed to have unit
fidelity to corresponding
ideal pure states
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Prior Work

- Continuous-time Markov chain for bipartite switching
(Vardoyan et al., ACM PER 2019)
- Model link-level entanglement generation as a Poisson process
- Easily extendable to finite quantum memories, heterogeneous
links, quantum state decoherence

- Continuous-time Markov chain for multipartite switching
(Nain et al., SIGMETRICS 2020/POMACS)

- Focuses on idealized scenario (infinite memory, no decoherence,
identical links)

- Reduces to ACM PER 2019 for bipartite case
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Preliminaries

Definitions: when in steady state (if it exists)
- Capacity C - # end-to-end entangled states
served per time slot
- Expected number of stored qubits at switch E/Q]

Interested in capacity of switch - max rate of switching
—> any pair of users wish to share an entangled state

- Bell pairs used as soon as there are enough to generate an
end-to-end Bell pair

—> Oldest Link Entanglement First (OLEF)
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The Model

Link-level entanglement generation: Bernoulli process
Successful link-level entanglement probability p
Coherence time: infinite

Swap success probability g

Can model using a discrete-time Markov chain with
state space

Q:={0,1,2,...} <

at most one link will store qubits at any given time

# of stored qubits for link with Bell pairs
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Transitions from state i

probability of staying

one of the stored Bell pairs was
used in a measurement P

IJ all links, except the one that
already has stored Bell pairs, have

k-1) of the stored Bell pairs
(k1) P failed to generate Bell pairs

were used in measurements
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Analytical Results
The system is stable if and only if £ > 2

When the system is stable, the capacity is

swapping number of users probability of
success ¢J successfully
probability S qkzp<_— generating
C — entanglement at
2 link level

exact match with

, L need two Bell pairs to generate
CTMC analysis results

one end-to-end Bell pair

33



Expected number of stored qubits in steady state
When the system is stable,

ElQlcTrmc = Q(kk_ )
ElQ|prymc = 2(11t55)



E/Q] Numerical Comparison

Qubits in Memory (E[Q])
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Summary

- Bipartite entanglement switching problem modeled as
a discrete-time Markov chain

- For a highly idealized switch, not much difference
between CTMC and DTMC models

- Nevertheless, problem interesting from queueing-
theoretic perspective
- Kitting process/stochastic assembly-like queue
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Future Directions

- Extensions
- non-identical links
- non-unit state fidelities
- finite quantum memories
- noisy storage/state decoherence

- DTMC becomes infeasible for modeling more complex systems

CTMC
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