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Concurrent Workloads and the Scheduler

e Concurrent kernel execution for higher GPU resource utilization

* Thread block scheduler partitions computational resources
* Shared memory
* Threads
* Registers
* Difficult to measure performance
* NVIDIA devices are black-box
* We rely on empirical observations of the scheduler



Key Findings

* The scheduler uses a for placing blocks on SMs
e Counter-intuitive performance degradation for concurrent workloads

* Predictability is challenging due to external factors
* Block placement
* Resource contention
* Launch order



The CUDA Programming
Model
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Policies of the Thread Block Scheduler

* When are blocks scheduled?
* Which block does the scheduler choose?
* Where will that block be placed?



The Leftover Policy

* The policy: determining when and which block

e As soon as space is available on some SM
* Only thread blocks from the earliest launched kernel
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The Most-Room Policy

* The policy: determining where
* The selected block will be placed on the SM with the most room
for blocks of the current kernel
* Based on each SM's current resource availability

* The first resource to run out becomes the

 Computational resources, i.e. shared memory, threads, registers
* Hardware limits, i.e. max blocks per SM, max warps per SM

 Ties are broken using a set tie-breaking ordering
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Performance Implications



Concurrent Colocated Case

|
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Kernel Classes

* Performance depends primarily on the amount of L1 cache contention

e Performance is bounded by the number of computations that can be
performed per unit of time

* Performance is dependent on global memory throughput

* On discrete GPUs, performance depends on the speed at which page
faults can be handled by the GPU



Results (Turing GPU)

_m Concurrent-Ilsolated (ms) | Concurrent-Colocated (ms)

Kernel X Kernel Y  Total Kernel X Kernel Y Kernel X Kernel Y
L1-Cache-Dependent 85 79 164 85 79 105(1.24X) 105 (1.33X)
Compute-Intensive 523 365 888 527 529 (1.45X) 530 676 (1.85X)
Memory-Intensive 949 10 959 951 224 (22.4X) 955 961 (96.1X)
PCle-Bandwidth-Dep. 369 130 499 385(1.04X) 355(2.73X) 388(1.05X) 466 (3.58X)
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Conclusions

* The scheduler uses a for placing blocks on SMs

e For choosing which SM to schedule the next thread block to
* Chooses the SM which can fit the highest number of blocks from the kernel
* Not a round-robin policy as previously believed

e Counter-intuitive performance degradation for concurrent workloads

* Depends on the kernel type
* Is influenced by resource contention & SM placement

* Predictability is challenging due to external factors

* Block placement
e Resource contention
* Launch order
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