Demystifying the o
NVIDIA GPU Thread — ;e
Block Scheduler Robert J. Walls
[m] 3% [u]

[m]=

WPI Cake Lab website

oozlo\,\Tzv,(i"s&% POLITECNICO

£ 4 '-'r*f(\ DI MILANO

Performance 2020
November 2-6

Concurrent Workloads and the Scheduler

e Concurrent kernel execution for higher GPU resource utilization

* Thread block scheduler partitions computational resources
* Shared memory
* Threads
* Registers
* Difficult to measure performance
* NVIDIA devices are black-box
* We rely on empirical observations of the scheduler

Key Findings

* The scheduler uses a for placing blocks on SMs
e Counter-intuitive performance degradation for concurrent workloads

* Predictability is challenging due to external factors
* Block placement
* Resource contention
* Launch order

The CUDA Programming
Model

CPU SM

Grid -KernelA) AP)
| Thread | | Thread Thread | ° Texture Memory] ’ L1 Cache / Shared]
| Block || Block || Block | 7 > S | Memory
LT T T T ' S5 Global Memory] 1’

‘Grid - KernelB PCle || = % i L L e’ Core | ==
(- (- 0 T2 [[|

| Thread | | Thread o5 L SM | .| SM ||
| Block || Block £ 0 2) e S
- = = = - ——1. egister File
(rovead | [Threac) () - ﬁ Al J
‘| Block || Block 3 1

— = - 4

CPU SM
~Grid - Kernel A : P \
[Thread] [Thread] [Thread] Texture Memory] ’ L1 Cache / Shared]
.| Block || Block ™| Block | : > e | Memory
: : Q% Global Memory l.'
A °rne < PCle | [2= L1 L _le? Core \
| Thread || Thread E % : [SM]: .| SM || r
hBIuck_‘ k_BIm:k_- . |'E (7] | 2 ! n-1 | | Register Fll]
(Thread | [Thread M] [SM] @ RN L)
‘| Block || Block S

CPU GPU SM

Grid -KernelA) P)
.| Thread || Thread Thread | [Texture Memory L1 Cache / Shared]
| Block || Block |~ | Block | ™ L Memory
T T T ' Global Memory

Grid - KernelB . . PCle ' ' ' Core | - | Core

C C N

-
| Thread || Thread
.| Block Block

-
O
o9
-
mﬂ
g2
Q
£3
=

Register File]

e =N =
| Thread | [Thread

A

Grid - Kernel A __ ___.

| Thread || Thread Thread +
| Block Block [| Block | :

Grid - KernelB .
e ~

iy
| Thread || Thread
.| Block Block

CPU

e =~ =
| Thread | | Thread

PCle

=
Q
k=,
m
o
©
g
L
=

™
o
=
T
7]
£
3]
w

Texture Memory

Global Memory

SM
n-1

ok

L1 Cache / Shared
Memory

J

Core | === | Core

Register File

Policies of the Thread Block Scheduler

* When are blocks scheduled?
* Which block does the scheduler choose?
* Where will that block be placed?

The Leftover Policy

* The policy: determining when and which block

e As soon as space is available on some SM
* Only thread blocks from the earliest launched kernel

The Leftover Policy

* The policy: determining when and which block

e As soon as space is available on some SM
* Only thread blocks from the earliest launched kernel

SMO
Execution Queue SM1

Kernel B Kernel A
SM3

6 SM4

The Leftover Policy

* The policy: determining when and which block

e As soon as space is available on some SM
* Only thread blocks from the earliest launched kernel

SMO
Execution Queue SM1

Kernel B Kernel A
SM3

6 SM4

The Leftover Policy

* The policy: determining when and which block

e As soon as space is available on some SM
* Only thread blocks from the earliest launched kernel

SMO

Execution Queue SM1
Kernel B Kernel A

SM3

6 SM4

The Leftover Policy

* The policy: determining when and which block

e As soon as space is available on some SM
* Only thread blocks from the earliest launched kernel

SMO
Execution Queue g
Kernel B Kernel A
SM3

6 SM4

The Leftover Policy

* The policy: determining when and which block

e As soon as space is available on some SM
* Only thread blocks from the earliest launched kernel

SMO
Execution Queue g
Kernel B Kernel A
SM3

6 SM4

The Leftover Policy

* The policy: determining when and which block

e As soon as space is available on some SM

* Only thread blocks from the earliest launched kernel

Execution Queue

Kernel B

Keriel A_

SMO

SM2

SM3

SM4

The Leftover Policy

* The policy: determining when and which block

e As soon as space is available on some SM
* Only thread blocks from the earliest launched kernel

SMO

Execution Queue SM1
Kernel B Kern_el A_ o

XXXXX | =

SM3

6 SM4

The Leftover Policy

* The policy: determining when and which block

e As soon as space is available on some SM
* Only thread blocks from the earliest launched kernel

SMO
Execution Queue SM1
Kernel B Keriel A_ o
0000 .0k

SM3

6 SM4

The Leftover Policy

* The policy: determining when and which block

e As soon as space is available on some SM

* Only thread blocks from the earliest launched kernel

Execution Queue

Kernel B

Keriel A_

SMO

SM1

SM2

SM3

SM4

The Leftover Policy

* The policy: determining when and which block

e As soon as space is available on some SM

* Only thread blocks from the earliest launched kernel

Execution Queue

Kernel B

P-4

Keriel A

SMO

SM1

SM2

SM3

SM4

The Most-Room Policy

* The policy: determining where
* The selected block will be placed on the SM with the most room
for blocks of the current kernel
* Based on each SM's current resource availability

* The first resource to run out becomes the

 Computational resources, i.e. shared memory, threads, registers
* Hardware limits, i.e. max blocks per SM, max warps per SM

 Ties are broken using a set tie-breaking ordering

The Most-Room Policy

* The policy: determining where

* The selected block will be placed on the SM with the most room for blocks of
the current kernel

* Based on each SM's current resource availability

SM1

SMO

Time i

The Most-Room Policy

* The policy: determining where

* The selected block will be placed on the SM with the most room for blocks of
the current kernel

* Based on each SM's current resource availability

SM1

SMO

A0

Time i

The Most-Room Policy

* The policy: determining where

* The selected block will be placed on the SM with the most room for blocks of
the current kernel

* Based on each SM's current resource availability

SM1
Al

SMO

A0

Time i

The Most-Room Policy

* The policy: determining where

* The selected block will be placed on the SM with the most room for blocks of
the current kernel

* Based on each SM's current resource availability

SM1
A1
SMO
AQ
Time
mes i

The Most-Room Policy

* The policy: determining where

* The selected block will be placed on the SM with the most room for blocks of
the current kernel

* Based on each SM's current resource availability

SM1

SMO

Time i i

The Most-Room Policy

* The policy: determining where

* The selected block will be placed on the SM with the most room for blocks of
the current kernel

* Based on each SM's current resource availability

SM1
A1
SMO
AQ
Time
mes i

The Most-Room Policy

* The policy: determining where

* The selected block will be placed on the SM with the most room for blocks of
the current kernel

* Based on each SM's current resource availability

SM1
A1
SMO
AQ
Time
mes i

The Most-Room Policy

* The policy: determining where

* The selected block will be placed on the SM with the most room for blocks of
the current kernel

* Based on each SM's current resource availability

SM1
A1
SMO
o 1N
Time
mes i

The Most-Room Policy

* The policy: determining where

* The selected block will be placed on the SM with the most room for blocks of
the current kernel

* Based on each SM's current resource availability

SM1
A1
SMO
o 1N
Time
mes i

The Most-Room Policy

* The policy: determining where

* The selected block will be placed on the SM with the most room for blocks of
the current kernel

* Based on each SM's current resource availability

SM1
A1
SMO
AQ
Time
mes i

The Most-Room Policy

* The policy: determining where

* The selected block will be placed on the SM with the most room for blocks of
the current kernel

* Based on each SM's current resource availability

SM1
A1
SMO
AQ
Time
mes i

The Most-Room Policy

* The policy: determining where

* The selected block will be placed on the SM with the most room for blocks of
the current kernel

* Based on each SM's current resource availability

SM1

SMO

Time i i

Performance Implications

Concurrent Colocated Case

|
SMO SM2 SM4 SM6 SM67

Kernel X (512 threads)

Concurrent Isolated Case

SMO SM2 SM4 SM6 SMe7
B Kernel Y (32/33 threads)

Kernel Classes

* Performance depends primarily on the amount of L1 cache contention

e Performance is bounded by the number of computations that can be
performed per unit of time

* Performance is dependent on global memory throughput

* On discrete GPUs, performance depends on the speed at which page
faults can be handled by the GPU

Results (Turing GPU)

_m Concurrent-Ilsolated (ms) | Concurrent-Colocated (ms)

Kernel X Kernel Y Total Kernel X Kernel Y Kernel X Kernel Y
L1-Cache-Dependent 85 79 164 85 79 105(1.24X) 105 (1.33X)
Compute-Intensive 523 365 888 527 529 (1.45X) 530 676 (1.85X)
Memory-Intensive 949 10 959 951 224 (22.4X) 955 961 (96.1X)
PCle-Bandwidth-Dep. 369 130 499 385(1.04X) 355(2.73X) 388(1.05X) 466 (3.58X)

10

Results (Turing GPU)

_m Concurrent-Ilsolated (ms) | Concurrent-Colocated (ms)

Kernel X Kernel Y Total Kernel X Kernel Y Kernel X Kernel Y
L1-Cache-Dependent 85 79 164 85 79 105(1.24X) 105 (1.33X)
Compute-Intensive 523 365 888 527 529 (1.45X) 530 676 (1.85X)
Memory-Intensive 949 10 959 951 224 (22.4X) 955 961 (96.1X)
PCle-Bandwidth-Dep. 369 130 499 385(1.04X) 355(2.73X) 388(1.05X) 466 (3.58X)

10

Results (Turing GPU)

_m Concurrent-Ilsolated (ms) | Concurrent-Colocated (ms)

Kernel X Kernel Y Total Kernel X Kernel Y Kernel X Kernel Y
L1-Cache-Dependent 85 79 164 85 79 105(1.24X) 105(1.33X)
Compute-Intensive 523 365 888 527 529 (1.45X) 530 676 (1.85X)
Memory-Intensive 949 10 959 951 224 (22.4X) 955 961 (96.1X)
PCle-Bandwidth-Dep. 369 130 499 385(1.04X) 355(2.73X) 388(1.05X) 466 (3.58X)

10

Results (Turing GPU)

_m Concurrent-Ilsolated (ms) | Concurrent-Colocated (ms)

Kernel X Kernel Y Total Kernel X Kernel Y Kernel X Kernel Y
L1-Cache-Dependent 85 79 164 85 79 105(1.24X) 105 (1.33X)
Compute-Intensive 523 365 888 527 529 (1.45X) 530 676 (1.85X)
Memory-Intensive 949 10 959 951 224 (22.4X) 955 961 (96.1X)
PCle-Bandwidth-Dep. 369 130 499 385(1.04X) 355(2.73X) 388(1.05X) 466(3.58X)

10

Results (Turing GPU)

_m Concurrent-Ilsolated (ms) | Concurrent-Colocated (ms)

Kernel X Kernel Y Total Kernel X Kernel Y Kernel X Kernel Y
L1-Cache-Dependent 85 79 164 85 79 105(1.24X) 105(1.33X)
Compute-Intensive 523 365 888 527 529 (1.45X) 530 676 (1.85X)
Memory-Intensive 949 10 959 951 224 (22.4X) 955 961 (96.1X)
PCle-Bandwidth-Dep. 369 130 499 385(1.04X) 355(2.73X) 388(1.05X) 466(3.58X)

10

Results (Turing GPU)

_m Concurrent-Ilsolated (ms) | Concurrent-Colocated (ms)

Kernel X Kernel Y Total Kernel X Kernel Y Kernel X Kernel Y
L1-Cache-Dependent 85 79 164 85 79 105(1.24X) 105 (1.33X)
Compute-Intensive 523 365 888 527 529 (1.45X) 530 676 (1.85X)
Memory-Intensive 949 10 959 951 224 (22.4X) 955 961 (96.1X)
PCle-Bandwidth-Dep. 369 130 499 385(1.04X) 355(2.73X) 388(1.05X) 466 (3.58X)

10

Conclusions

* The scheduler uses a for placing blocks on SMs

e For choosing which SM to schedule the next thread block to
* Chooses the SM which can fit the highest number of blocks from the kernel
* Not a round-robin policy as previously believed

e Counter-intuitive performance degradation for concurrent workloads

* Depends on the kernel type
* Is influenced by resource contention & SM placement

* Predictability is challenging due to external factors

* Block placement
e Resource contention
* Launch order

11

