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Motivation

Caching and resource allocation problems are ubiquitous

CDN Cloud Computing Internet of Things
Content-Centric 
Networks



User nodes generate requests for content items with certain request rates
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Nodes have caches with finite capacities
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Requests terminate early upon a cache hit
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Caching Gain Rate:



Q: How should items be allocated to caches?

Optimal Content Allocation

?

?

User

?



Existing Works: Caching Gain Rate

This work: Instead of simply maximizing the overall caching gain rate, 
we take fairness into consideration.

Advantages:
• It captures popularities and routing cost

• In a general cache network, algorithms that ignore routing cost can be 
arbitrarily suboptimal [Ioannidis and Yeh 2016] 

• The objective function is submodular [Shanmugam et al. 2013]
• Approximation algorithms exist

Several papers study the maximization of the overall caching gain rate
• Caching in general networks [Ioannidis and Yeh 2016] 
• Caching in resilient networks [Li et al. 2018]
• Joint routing and caching [Ioannidis and Yeh 2018]



Existing Works: Fair Caching

• Either specific fairness notions (e.g. proportional fairness) or α-fair utility 
functions

• They consider different utilities/objectives.
• Hit ratio, e.g. [Dehghan et al. 2016], [Panigraphy et al. 2017], [Chu et al. 

2017] 
• Storage and fetching cost [Wang et al. 2016], video quality [Avrachenkov et 

al. 2019], throughput [Bonald et al. 2017], delay [Rezvani et al. 2019]
• They do not capture the multi-hop routing cost. Can be suboptimal in a 

general cache network
• EX: Requests served with hit ratio 1 at a distant server, in reality, have a 

lower utility than requests served locally with a lower hit ratio.

This work: To study the fair caching problem in a general cache network, we 
consider the utility of caching gain rate.



• Formal statement of the fair caching network model

• NP-Hard

• Maximizing submodular objective under matroid constraints

• Greedy Algorithm, 1/2 approximation factor

• Continuous Greedy, 1-1/e approximation factor

• Stationary Randomized strategy

• L-method,                      approximation factor

• Evaluations

• Performance under synthetic and real-world network topologies

• Analysis for the effect of fairness

Contributions
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Model: Network

Network represented as a directed, bi-directional graph  



Model: Edge Costs

Each edge                    has a cost/weight 
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Edge costs: 



Model: Node Caches

Node               has  a cache with capacity   

Node capacities: 

Edge costs: 



Model: Cache Contents

Node capacities: 

Edge costs: 

: the catalog of equally sized contents



Model: Cache Contents

Node capacities: 

Edge costs: 

For             and            ,  let

if     stores  

o.w.

Then, for all           ,  



Model: Cache Contents

Node capacities: 

Edge costs: 

The global allocation strategy is the binary                      matrix

, for all 



Model: Designated Servers

Node capacities: 

Edge costs: 

For each           ,  there exists a set of  nodes              (the 

designated servers of   ) that permanently store    .

, for all 



Model: Demand

Node capacities: 

Edge costs: 

A request is a pair          such that:  

, for all 

❑ is an item in

❑ is a simple path in       such that                 .  

Requests are always 

satisfied!

?



Model: Demand

Node capacities: 

Edge costs: 

Demand : set of all requests

?

The request rate of each request is            (number of requests 

per unit of time) 

Request rates:: demand

, for all 



Model: Routing Costs & Caching Gain

Node capacities: 

Edge costs: 

?

Request rates:: demand

, for all 

Worst case routing cost:
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Model: Routing Costs & Caching Gain

Node capacities: 

Edge costs: 

?

Request rates:: demand

, for all 
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Cost due to intermediate caching:

Worst case routing cost:

Request
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Model: Routing Costs & Caching Gain

Node capacities: 

Edge costs: 

?

Request rates:: demand

, for all 

5
3 4

6

?

Cost due to intermediate caching:

Worst case routing cost:

Caching Gain:

Request



Utility Maximization

Node capacities: 

Edge costs: 

Request rates:: demand

, for all 

Caching Gain:
?
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α-fair utility functions [Mo et al. TON 2000]

α fairness

α=0, no fairness
α=1, proportional fairness
α→∞,   max-min fairness



Utility Maximization

Node capacities: 

Edge costs: 

Request rates:: demand

, for all 

Caching Gain:
?

5
3 4

6

?

Utility of requests:

Utility of requests: 

Caching gain rate:



Utility Maximization

Node capacities: 

Edge costs: 

Request rates:: demand

, for all 

?
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Caching Gain:

Maximize:

Subject to: ,             for all 

,             for all              and  

Utility of requests:

NP hard, when α =  0, [Shanmugam et al. IT 2013]
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Submodularity

Thm:
For all α-fair utility functions, the utility maximization problem is submodular 
maximization under matroid constraints

Two polynomial approximation algorithms:

Greedy algorithm produces a solution within 1/2 approximation factor 
[Calinescu et al. 2007].

Continuous greedy algorithm produces a solution within 1-1/e approximation 
factor [Calinescu et al. 2011].



Submodular
maximization

Continuous-Greedy Algorithm

Continuous greedy algorithm produces a solution within 1-1/e approximation 
factor [Calinescu et al. 2011].



Submodular
maximization

Non-convex 
maximization

Multilinear Extension

Continuous-Greedy Algorithm

Continuous greedy algorithm produces a solution within 1-1/e approximation 
factor [Calinescu et al. 2011].

We consider        as random variables with joint distribution:



Iterate:

Submodular
maximization

Non-convex 
maximization

Multilinear Extension

Frank-Wolfe

Fractional

Continuous-Greedy Algorithm

Continuous greedy algorithm produces a solution within 1-1/e approximation 
factor [Calinescu et al. 2011].



Submodular
maximization

Non-convex 
maximization

Multilinear Extension

Frank-Wolfe

Pipage Rounding

Thm: With high probability,

FractionalInteger

Continuous-Greedy Algorithm

Continuous greedy algorithm produces a solution within 1-1/e approximation 
factor [Calinescu et al. 2011].
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Stationary Randomized Strategy

• We consider a time-slotted system.
• At each time slot, a random caching strategy is sampled from a joint 

distribution over the feasible set:

• Our problem becomes

Distribution

Thm:
There exists a polynomial method that produces a distribution which is 
within                      from the optimal in expectation.
This approximation factor is better than 1-1/e for utility functions with α < 1



Utility of expected 
caching gain rate

L-method



Maximizing total 
utility over Y

Equivalence

Optimal solution:  Y*

Utility of expected 
caching gain rate

L-method



Equivalence

Convex 
approximation

Fractional

Optimal solution:  Y*

Maximizing total 
utility over Y

Convex function

Utility of expected 
caching gain rate

L-method



Equivalence

Convex 
approximation

Fractional

Optimal solution:  Y*

Convex Optimization Optimal solution:  Y**

Maximizing total 
utility over Y

Utility of expected 
caching gain rate

L-method



Equivalence

Convex 
approximation

Random rounding
FractionalDistribution

Optimal solution:  Y*

Optimal solution:  Y**

[Ioannidis and Yeh 2016]

Maximizing total 
utility over Y

Utility of expected 
caching gain rate

L-method
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Caching algorithms

 GRD
 CG
 L
 FIFO
 LRU
 LFU
 RR

proposed ones

We show the algorithms outperform the 
baseline caching algorithms (LRU, LFU, FIFO, 
RR) over different synthetic and real-world 
topologies. 

Performance Evaluation

Note that the y-axis uses log-scale



Effect of Fairness: Content Allocation

• Why we want to use this fair caching model? What will this model give us?

• We show that content items with different popularities are more fairly 
stored in the network if we consider the fair caching scheme.



Effect of Fairness: Content Allocation

4-ary balanced tree of height 4: 
 Requests are generated u.a.r. at the leaf nodes
 The root is the server of all content items
 Content popularities follow Zipf distribution. The content with smaller index has 

higher popularity

Server

?

Layer 0

Layer 1

Layer 2

Layer 3



Effect of Fairness: Content Allocation

4-ary tree with height 3: 
 Requests enter the network from the leaf nodes
 The root is the server of all content items
 Content popularities follow Zipf distribution. The content with smaller index has 

higher popularity
 The height of a bar is the fraction of total cache space used to store a content

Only cache content 1 and 2 in layer 3



Summary

 Fair caching model: utility maximization problem

 We study several polynomial offline solutions

 Content items are more fairly stored in the network

 Future direction: Distributed and adaptive algorithms?



Thank you!



Submodularity

non-decreasing 
concave

We are maximizing a monotone submodular function under matroid constraints

monotone and submodular

non-decreasing 
submodular

non-decreasing 
submodular

,     for all 

,     for all              and  

matroid constraints



Greedy Algorithm

Greedy algorithm produces a solution within 1/2 approximation factor 
[Calinescu et al. 2007].

Main idea: In each iteration, select an item to put in the cache of one of the 
nodes such that the overall utility increment is maximized.



Effect of Fairness: Caching Gain

• We confirm that caching gain is more fairly distributed across different 
requests, content items, and users when we consider request fairness, 
content fairness, and user fairness, respectively.



Effect of Fairness: Caching Gain

Request fairness
Request fairness

User fairness

Request fairness

Content fairness

• Sharpness
• Area Above Curve 

(AAC)

L-method
α = 2
GEANT topology


