Frequency Scaling in Multilevel Queues

IFIP Performance 2020

Maryam Elahi^{1,3} Andrea Marin² Sabina Rossi² Carey Williamson³

¹ Mount Royal University, Canada

² Università Ca'Foscari Venezia, Italy

³ University of Calgary, Canada

Introduction and Contribution

The queueing model and its solution

Case study

Conclusion

Introduction and Contribution

- **Goal:** serve first the smallest jobs to improve the expected response time
- Assumptions:
 - Do we know the job size at the arrival epoch? (Shortest Remaining Processing Time)
 - Do we know the distribution of the job size? (Gittin's policy)
 - Is the job size distribution heavy tailed? (Least Attained Service (LAS), Multilevel queues)

How do multilevel queues work?

Example: two levels with Processor Sharing (PS) server

- Goal: Energy saving
- Main idea: When there are few jobs in the system, we can reduce the processor speed
 - We increase the expected response time w.r.t. constant speed only for the *lucky* jobs
 - The service time is directly proportional to the service speed f
 - The power consumption depends on the service speed as f^{α} , were $2 \leq \alpha \leq 3$
- Linear frequency scaling: The server speed is proportional to the number of jobs in the system

Related work (short list)

• Policies independent of the received service

- (George, Harrison): FCFS queues and frequency scaling
- (Wierman et al.): M/G/1/PS queues with frequency scaling

• Policies with known job size

- (Bansal et al.; Andrew et al.): Worst case analysis of SRPT with frequency scaling
- (Andrew at al.; Elahi, Williamson): Unfairness in SRPT with frequency scaling
- (Lassila; Aalto): LAS with sleeping servers

- We study a two-level queue with PS discipline and linear speed scaling on the low-priority jobs (PS+IS)
- We give a numerical solution of the queueing system and validate it with discrete event simulation
- We study the behaviour of the model with job size distributions obtained by monitoring TCP flows of a data centre

The queueing model and its solution

Graphical representation

Processor Sharing (PS)

Infinite Server (IS)

Note: The IS system works only when the PS is idle

• We use Generalized Hyperexponential (GH) distributions

$$f_X(x) = \sum_{k=1}^{K} p_k \mu_k e^{-p_k \mu_k}$$

where $\sum_{k=1}^{K} p_k = 1$, $p_k \in \mathbb{R}$, $\mu_k \in \mathbb{R}^+$, $f_X(x) > 0$ for all $x \in \mathbb{R}^+$

- GH distributions are dense in the domain of the distributions
 - They can approximate any distribution arbitrary well

Analysis of the queue: sketch

- We can see the system consisting of two queues:
 - **High priority** one which is M/G/1/PS whose job sizes are truncated at *a*
 - Low priority one which works during the idle periods of the PS which is a $M^{\mathcal{B}}/G/\infty$ queue
 - The arrival process is Poisson with intensity $\boldsymbol{\lambda}$
 - The batch size is the number of jobs that crossed the threshold during a busy period of the PS level
- The **generating function** of the batch size distribution has not an explicit form but has a characteristic equation (Kleinrock)
- The solution of the IS queue requires the **distribution** of the batch size

Computation of the batch size distribution

- We invert the generating function with the Lattice-Poisson algorithm by Abate and Whitt
- The evaluation of the generating function is obtained with a **fixed point algorithm** whose convergence is proved by resorting to Banach's contraction mapping fixed point theorem
- The accuracy of the numerical procedure **is validated** in low and heavy-load by comparing the first two moments of the distribution (which can be computed explicitly for GH distributions from the characteristic equation) with those obtained by the numerical inversion

- We resort to the literature for the power consumed by the PS queue
- We provide a numerical solution for the IS queue and integer values of the exponent α
- The power consumption is derived from the second ($\alpha = 2$) and third ($\alpha = 3$) moments of the occupancy distribution in the IS queue

Case study

Dataset

- **TCP flows** monitored at the data centre of the Università Ca' Foscari Venezia in November 2019
- Fitting with PH-Fit into an acyclic phase-type distribution
- Transformation of the acyclic phase-type distribution into a GH

Accuracy of the fitting: empirical CDF for the service demand

(b) Empirical and analytical cumulative density function in log-linear scale. (c) Complementary cumulative density function in log-log scale.

PS+IS vs. PS: Comparison of the expected response time

• PS queue has speed 1 and IS has speed f < 1

PS+IS vs. PS: Comparison of the power consumption

(a) Power consumption: $\rho_{PS} = 0.85$ when $0 \le a \le 4 \cdot 10^4$. $\rho_{PS} = 0.92$ when $0 \le a \le 4 \cdot 10^4$.

(b) Power consumption:

PS+IS vs. PS: Slowdown

(a) Slowdown of PS+IS conditioned to the job size x with $\rho_{PS} = 0.85$.

(b) Slowdown of PS+IS conditioned to the job size x with $\rho_{PS} = 0.92$.

PS+IS vs. **PS:** Comparison of the expected response times with same power consumption

(a) Comparison of the expected response time with $\rho_{PS} = 0.70$ and f = 0.10.

(b) Comparison of the expected response time with $\rho_{PS} = 0.70$ and f = 0.15.

Simulation

- Simulation has been used to cross validate the numerical results
- Simulation allows the investigation of other characteristics of the system such as the distribution of the system speed

21

Conclusion

- We have introduced a two-level queueing system (PS+IS) with linear speed scaling for the low-priority level
- A numerical solution procedure has been proposed and its accuracy has been validated with discrete event simulation
- Experiments on real-world job size distributions have been carried out
- We showed that the model-driven configuration of the PS+IS system is crucial for obtaining the benefits of the speed scaling without compromising the slowdown of the system too much