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Introduction and Contribution
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Size based scheduling

• Goal: serve first the smallest jobs to improve the expected

response time

• Assumptions:

• Do we know the job size at the arrival epoch? (Shortest

Remaining Processing Time)

• Do we know the distribution of the job size? (Gittin’s policy)

• Is the job size distribution heavy tailed? (Least Attained

Service (LAS), Multilevel queues)
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How do multilevel queues work?

Example: two levels with Processor Sharing (PS) server
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Frequency scaling

• Goal: Energy saving

• Main idea: When there are few jobs in the system, we can
reduce the processor speed

• We increase the expected response time w.r.t. constant speed

only for the lucky jobs

• The service time is directly proportional to the service speed f

• The power consumption depends on the service speed as f α,

were 2 ≤ α ≤ 3

• Linear frequency scaling: The server speed is proportional

to the number of jobs in the system
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Related work (short list)

• Policies independent of the received service

• (George, Harrison): FCFS queues and frequency scaling

• (Wierman et al.): M/G/1/PS queues with frequency scaling

• Policies with known job size

• (Bansal et al.; Andrew et al.): Worst case analysis of SRPT

with frequency scaling

• (Andrew at al.; Elahi, Williamson): Unfairness in SRPT with

frequency scaling

• (Lassila; Aalto): LAS with sleeping servers
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Contribution

• We study a two-level queue with PS discipline and linear

speed scaling on the low-priority jobs (PS+IS)

• We give a numerical solution of the queueing system and

validate it with discrete event simulation

• We study the behaviour of the model with job size

distributions obtained by monitoring TCP flows of a data

centre
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The queueing model and its solution
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Graphical representation

a X − a

X Jobs with size < a

Jobs with size ≥ a

Infinite Server (IS)

Processor Sharing (PS)

Poisson(λ)

Note: The IS system works only when the PS is idle
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Job size distribution

• We use Generalized Hyperexponential (GH) distributions

fX (x) =
K∑

k=1

pkµke
−pkµk

where
∑K

k=1 pk = 1, pk ∈ R, µk ∈ R+, fX (x) > 0 for all

x ∈ R+

• GH distributions are dense in the domain of the distributions

• They can approximate any distribution arbitrary well
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Analysis of the queue: sketch

• We can see the system consisting of two queues:

• High priority one which is M/G/1/PS whose job sizes are

truncated at a

• Low priority one which works during the idle periods of the

PS which is a MB/G/∞ queue

• The arrival process is Poisson with intensity λ

• The batch size is the number of jobs that crossed the

threshold during a busy period of the PS level

• The generating function of the batch size distribution has

not an explicit form but has a characteristic equation

(Kleinrock)

• The solution of the IS queue requires the distribution of the

batch size
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Computation of the batch size distribution

• We invert the generating function with the Lattice-Poisson

algorithm by Abate and Whitt

• The evaluation of the generating function is obtained with a

fixed point algorithm whose convergence is proved by

resorting to Banach’s contraction mapping fixed point theorem

• The accuracy of the numerical procedure is validated in low

and heavy-load by comparing the first two moments of the

distribution (which can be computed explicitly for GH

distributions from the characteristic equation) with those

obtained by the numerical inversion
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Computation of the power consumption

• We resort to the literature for the power consumed by the PS

queue

• We provide a numerical solution for the IS queue and integer

values of the exponent α

• The power consumption is derived from the second (α = 2)

and third (α = 3) moments of the occupancy distribution in

the IS queue
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Case study
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Dataset

• TCP flows monitored at the data centre of the Università Ca’

Foscari Venezia in November 2019

• Fitting with PH-Fit into an acyclic phase-type distribution

• Transformation of the acyclic phase-type distribution into a

GH
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Figure 1: Distribution of the service demand of the case study.
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PS+IS vs. PS: Comparison of the expected response time

• PS queue has speed 1 and IS has speed f < 1
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(a) Expected response time:

ρPS = 0.85.
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(b) Expected response time:

ρPS = 0.92.
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PS+IS vs. PS: Comparison of the power consumption
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(a) Power consumption:

ρPS = 0.85 when 0 ≤ a ≤ 4 · 104.
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(b) Power consumption:

ρPS = 0.92 when 0 ≤ a ≤ 4 · 104.

18



PS+IS vs. PS: Slowdown
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(a) Slowdown of PS+IS

conditioned to the job size x with

ρPS = 0.85.
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(b) Slowdown of PS+IS

conditioned to the job size x with

ρPS = 0.92.
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PS+IS vs. PS: Comparison of the expected response times

with same power consumption
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(a) Comparison of the expected

response time with ρPS = 0.70 and

f = 0.10.
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(b) Comparison of the expected

response time with ρPS = 0.70 and

f = 0.15.
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Simulation

• Simulation has been used to cross validate the numerical

results

• Simulation allows the investigation of other characteristics of

the system such as the distribution of the system speed
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(a) System speed: ρPS = 0.70.
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(b) System speed: ρPS = 0.85.
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Conclusion
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Conclusion

• We have introduced a two-level queueing system (PS+IS)

with linear speed scaling for the low-priority level

• A numerical solution procedure has been proposed and its

accuracy has been validated with discrete event simulation

• Experiments on real-world job size distributions have been

carried out

• We showed that the model-driven configuration of the PS+IS

system is crucial for obtaining the benefits of the speed scaling

without compromising the slowdown of the system too much
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