Only Relative Speed Matters:
Virtual Causal Profiling

Behnam Pourghassemi , Ardalan Amiri Sani , Aparna Chandramowlishwaran

University of California, Irvine

38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation
(Performance '20)

Performance {Really} Matters!

« Business Revenue
« User satisfaction
« Research cost

 etc.

- Amazon
d

1 second lag in loading
Amazon would cost $1.6
billion in sale

J

(@)

(@

53% of mobile site visitors
leave a page that takes longer
than 3 seconds to load

@

- Google

(@

Performance Analysis

1. What are the bottlenecks or critical spots in the program?

2. How much

3. How much is the measured performance gain related to the system and configuration?

W

~1000S/hr for code runs on
supercomputer/cluster

- ExtremeTech

can we realistically achieve by optimizing these critical spots? or n

Wﬁat-g’f ﬂna@sis

What-if Analysis with Conventional Profilers

@1 void A() { // ~5.9 seconds
02 for(volatile size_t x=0; x<2500000000; x++) {}
03 }

@4 void B() { // ~5.4 seconds 1 A()
@5 for(volatile size t y=0; y<2200000000; 5.39 1 B()
@6 } 511 “iﬂé 1«
@7 void C() { // ~5.1 seconds . - \]’a\%l —

08 for(volatile size t x=0; x<2100000000; S s —-led name

09 } : 7= A()

10 int main() { N Ny 4 g =

11 thread A_thread(A), B_thread(B); 565 0.0 B()

12 A_thread.join(); B_thread.join();

13 c(); 31.2 5.89 0.00 C()

14 }

thread 3

thread 2 39

thread 1

program speedup (%)

»

v

' time function speedup (%)

Causal Profiling

0 e
> ©
©
©

e Causal profiling determines impact of optimization in a line of code on the total execution time.

e Does not require dependency graph generation and subsequent graph processing.

e Dependencies and impact of optimization are captured at runtime.

Curtsinger et al., "Coz: Finding code that counts with causal profiling." SOSP 2015. [D)) J;,>

Causal Profiling (Methodology)

Key idea: virtually speedup a selected code segment during runtime.

1) No speedup

e Virtual speedup oot |

o Run concurrent execution paths slower Thread 2

v

i time

whenever the selected function is running.
2) Actual speedup
e Amount of delay « selected speedup Thread 1 [[NARIE
é : original
e Coz profiler is implemented based on this idea T Ttme
speedup

3) Virtual speedup

ioriginal N all inserted
Thread 1 ! time delays
Thread 2
—>
time
speedup y Q
/ \\
L 19))

What-if Analysis with Coz profiler

@1 void A() { // ~5.9 seconds

02 for(volatile size_t x=0; x<2500000000; x++) {}
@3 }

04 void B() { // ~5.4 seconds

05 for(volatile size_t y=0; y<2200000000; y++) {}
o6 }

@7 void C() { // ~5.1 seconds

08 for(volatile size_t x=0; x<2100000000; x++) {}
09 }

10 int main() {

11 thread A_thread(A), B_thread(B);

12 A thread.join(); B_thread.join();

13 C();

14 }

S
I = 4
N o % .
threa] £) 2
I s |3% 4 §Q5
thread 1 C i §° N\
I > o . E)))
n

time function speedup (%) °

Problems with Causal Profiling

e Large number of experiments

o Various systems and configuration

o A study on page load time using causal profiling had over 12000 runs”
o Cross-platform what-if analysis

o Limited access to resources

o Develop and maintain Coz profiler for different architecture and OS

o Using emulators is ti@tual causal profiling

e Do we need precise timing? Can we use the idea of to scale the analysis?

| * Pourghassemi et al.,“What-if Analysis of Page Load Time in Web Browsers Using Causal Profiling”, ACM SIGMETRICS’19

Virtual Causal Profiling — Design Idea

Preserve the ratio of the code segments by controlling the speed of CPU, I/O, and Memory

78 ms 84MS 117 ms
A A |
D 56 ms D 7188 ms
B B
CPU 20% slower 50% slower 78 847
Memory 50% slower 50% slower 56 7 g o133

I/0 2X faster 50% slower

Theorem Behind Virtual Causal Profiling

e Use graph representation to model causal start ﬂ; finish
profiling |

Thread 1
o Prove soundness of causal profiling

Thread 2
o Prove the necessary condition for virtual causal

profiling

Thread 3

S
EUJ
1 N
IS
e
L
& |
: X
E N
P
{lsm B
.
ik
e
:\1
IS B

Theorem.. If the execution time of all the segments scale by a ' ‘

constant factor o (e.g. E(A;) = aE(A4;)) as well as the speedup in a T = f(E(4;), D(4; ;)
selected segment (e.g. &, = 0.&), then the new program speedup, /
, J E'(Ag) =E(4g) + £
Snew ., IS the same as S,4 and is given by Speedup 4, 6 6
Snew — (T+8) _TTvirtual . by E E’(Ag) — E(Ag) + £
(T'+¢~-T
- T

Only relative execution time of code segments is important, not the absolute execution time!

VCoz: Theory to Practice

target device !
(spec) : Match host & target hardware scaling factors <

' Performance tests _y
[

* Implement prototype of VCoz

systems spec
scaling factorsJ database

e VCoz modules

o Host & target hardware matcher .
normalization

o Normalization
normalized factors

o Component tuning

A 4

component tuning

o Profile application run application application

with N

\ 4

CPU ||Memory || I/O

Coz profiler

__________________________ - - - —— -

what-if graph

V4

Results and Validation

1 void b1(){
. 2 [/ benchmark 1
e Experiment setup 3) | |
Test case 4 void b2(){ I
° 5 //benchmark 2 thread 1 ([EE I !
o Benchmarks 6} 0 thread 2 | benchmark 2
7 Int main >
o CPU-heavy: LU decomp, Cholesky _ ' _)
o Memory-heavy: stream 2 EZre.agl tl_(ftlz)' .t2.(b2.), start Test case run time end
o |/O-heavy: Clinet-Server data stream -join(); t2_join();
12} a .
=)
: ks
o Host: MacBook Air Target: Nexus 6P 9
=
Matrix Mult. 3.1s 155 < line speedup
FFT 56 ms 23 ms 2.4
LU 2.35s 1.0s 2.3
Aepy = 2.3
Word Count 38s 16 s 2.3
Cholesky 1.1s 450 ms 2.4 \
PCA 690ms 300ms 2.3 ~J%)

Results and Validation

CPU-CPU

0O 10 20 30 40 50 60 70 80 90 100
thread speedup (percent)

=2 Coz on Nexus 6P mmmmmmm \/Coz == Coz on the host e \/Coz 1.5 GHz |

Results and Validation

CPU-CPU

L
o U O

m speedup (percent)
H N N W W
U O U1 O U»n

progra
=
o U O

0

10 20 30 40 50 60 70 80 90 100
thread speedup (percent)

cPU-l/0 (without normalization)

\
P) | 60/0
S Y c,\.“a“l
=
A/ ‘4'-7/’\

/./z’ /k’ >

//r
/
Vet |
0 10 20 30 40 50 60 70 80 90 100

thread speedup (percent)

CPU-Memory
= 50
C
45
Y ¢ ® ho—y
o 40 ——— ® e
= 35 / ! -
o
220 /)
©

Q

() 25 o/
220

€ 15

S0l

ra

pro
ul

o

30 40 50 60 70 80 90 100
thread speedup (percent)

CPU-1/O (with normalization)

%30 7 $: ? 1

£ /?’
EZO 4

O 10)

0
0 10 20 30 40 50 60 70 80 90 100
thread speedup (percent)

g9

pr

"3 Coz on Nexus 6P

I \/Coz

/3 Coz on the host = \/Coz 1.5 GHz

Conclusion

can be used in what-if analysis but it is not scalable

e Prove of concept and the necessary condition for perseverance of what-if graphs

e Introduce and implement to scale experiments and cross-platform
performance measurements

« Validation and accuracy analysis of VCoz by running experiments on different workloads

~ 4

Thanks for your attention!

\V/
e/

Behnam Pourghassemi Prof. Aparna Chandramowlishwaran Prof. Ardalan Amiri Sani

Personal webpage: http://newport.eecs.uci.edu/~bpourgha/

Email: bpourgha@uci.edu

HPC Forge: http://hpcforge.eng.uci.edu/

1A
\\‘_.\v "\““..‘
L 19))

15 N 7

http://newport.eecs.uci.edu/~bpourgha/
http://newport.eecs.uci.edu/~amowli/hpcforge/

