
Only Relative Speed Matters:
Virtual Causal Profiling

Behnam Pourghassemi , Ardalan Amiri Sani , Aparna Chandramowlishwaran

University of California, Irvine

38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation
(Performance ’20)

1

• Business Revenue
• User satisfaction
• Research cost

• etc.

2

Performance {Really} Matters!

What-if Analysis

Performance Analysis
1. What are the bottlenecks or critical spots in the program?

2. How much performance improvement can we realistically achieve by optimizing these critical spots?

3. How much is the measured performance gain related to the system and configuration?

A Bor

53% of mobile site visitors
leave a page that takes longer

than 3 seconds to load
- Google

1 second lag in loading
Amazon would cost $1.6

billion in sale
- Amazon

∼1000$/hr for code runs on
supercomputer/cluster

- ExtremeTech

3

% cumulative total time (seconds) calls name
35.89 5.88 1 A()
32.91 5.39 1 B()
31.19 5.11 1 C()

% time self children called name
35.9 7.20 0.00 A()

32.9 5.89 0.00 B()

31.2 5.89 0.00 C()

01 void A() { // ˜5.9 seconds
02 for(volatile size_t x=0; x<2500000000; x++) {}
03 }
04 void B() { // ˜5.4 seconds
05 for(volatile size_t y=0; y<2200000000; y++) {}
06 }
07 void C() { // ˜5.1 seconds
08 for(volatile size_t x=0; x<2100000000; x++) {}
09 }
10 int main() {
11 thread A_thread(A), B_thread(B);
12 A_thread.join(); B_thread.join();
13 C();
14 }

A

B

thread 3

thread 2

time

Cthread 1

function speedup (%)
pr

og
ra

m
 sp

ee
du

p
(%

)

What-if Analysis with Conventional Profilers

[~] gprof

Perf

3%

● Causal profiling determines impact of optimization in a line of code on the total execution time.

● Does not require dependency graph generation and subsequent graph processing.

● Dependencies and impact of optimization are captured at runtime.

4
Curtsinger et al., "Coz: Finding code that counts with causal profiling." SOSP 2015.

Causal Profiling

● Key idea: virtually speedup a selected code segment during runtime.

● Virtual speedup
o Run concurrent execution paths slower

whenever the selected function is running.

● Amount of delay ∝ selected speedup

● Coz profiler is implemented based on this idea

5

A B

C A

Thread 1

Thread 2

time

1) No speedup

A B

C A

Thread 1

Thread 2

time

speedup

original
time

2) Actual speedup

A B

C A

Thread 1

Thread 2

time

speedup

all inserted
delays

original
time +

3) Virtual speedup

Causal Profiling (Methodology)

6

Athread 3

thread 2

time

01 void A() { // ˜5.9 seconds
02 for(volatile size_t x=0; x<2500000000; x++) {}
03 }
04 void B() { // ˜5.4 seconds
05 for(volatile size_t y=0; y<2200000000; y++) {}
06 }
07 void C() { // ˜5.1 seconds
08 for(volatile size_t x=0; x<2100000000; x++) {}
09 }
10 int main() {
11 thread A_thread(A), B_thread(B);
12 A_thread.join(); B_thread.join();
13 C();
14 }

Cthread 1

What-if Analysis with Coz profiler

function speedup (%)
pr

og
ra

m
 sp

ee
du

p
(%

)

B 3%

What-if graph

7

Problems with Causal Profiling

● Large number of experiments

o Various systems and configuration

o A study on page load time using causal profiling had over 12000 runs*

● Cross-platform what-if analysis

o Limited access to resources

o Develop and maintain Coz profiler for different architecture and OS

o Using cycle-accurate emulators is time-consuming

● Do we need precise timing? Can we use the idea of virtualization to scale the analysis?

virtual causal profiling

* Pourghassemi et al.,“What-if Analysis of Page Load Time in Web Browsers Using Causal Profiling”, ACM SIGMETRICS’19

8

Virtual Causal Profiling – Design Idea

• Preserve the ratio of the code segments by controlling the speed of CPU, I/O, and Memory

A

B

A

B

84 ms

71 ms

117 ms

84 ms

Memory

CPU

I/O

78 ms

56 ms

78
56 ≠

84
71

78
56 =

117
8450% slower

20% slower

2X faster

50% slower

50% slower

50% slower

9

Theorem.. If the execution time of all the segments scale by a
constant factor α (e.g. E(A1) = αE(A1)) as well as the speedup in a
selected segment (e.g. 𝜺new = α𝜺), then the new program speedup,
𝑆-./ , is the same as 𝑆012 and is given by

𝑆-./ =
(345) − 36789:;<

3
.

Theorem Behind Virtual Causal Profiling
● Use graph representation to model causal

profiling

○ Prove soundness of causal profiling

○ Prove the necessary condition for virtual causal
profiling

Only relative execution time of code segments is important, not the absolute execution time!

𝐴>

𝐴?

𝐴@𝐴A𝐴B 𝐴C

𝐴D

𝐴E 𝐴F

start finish

Thread 1

Thread 2

Thread 3

time

𝑇 = 𝑓(𝐸(𝐴K), 𝐷(𝐴K,N))

𝐸′(𝐴@) = 𝐸(𝐴@) + 𝜺

𝐸′(𝐴F) = 𝐸(𝐴F) + 𝜺
Speedup 𝐴D

by 𝜺

𝑆 =
(𝑇′ + 𝜀) − 𝑇

𝑇

10

VCoz: Theory to Practice

• Implement prototype of VCoz

• VCoz modules

o Host & target hardware matcher

o Normalization

o Component tuning

o Profile application component tuning

CPU Memory I/O

Match host & target hardwaretarget device
(spec)

what-if graph

applicationrun application
with

Coz profiler

VCoz

Performance tests
scaling factors

systems spec
databasescaling factors

normalization

normalized factors

11

Results and Validation

● Experiment setup
o Test case

o Benchmarks
o CPU-heavy: LU decomp, Cholesky
o Memory-heavy: stream
o I/O-heavy: Clinet-Server data stream

o Host: MacBook Air Target: Nexus 6P

benchmark 1thread 1

thread 2 benchmark 2

Test case run timestart end

1 void b1(){
2 // benchmark 1
3 }
4 void b2(){
5 // benchmark 2
6 }
7 Int main(){
8 thread t1(f1), t2(b2);
9 t1._join(); t2_join();
12 }

line speeduppr
og

ra
m

 sp
ee

du
p

Benchmark mobile desktop ratio
Matrix Mult. 3.1 s 1.5 s 2.1

FFT 56 ms 23 ms 2.4
LU 2.3 s 1.0 s 2.3

Word Count 38 s 16 s 2.3
Cholesky 1.1 s 450 ms 2.4

PCA 690 ms 300 ms 2.3

𝛼𝑐𝑝𝑢 = 2.3

12

Results and Validation

Coz on Nexus 6P VCoz Coz on the host VCoz 1.5 GHz

13Coz on Nexus 6P VCoz Coz on the host VCoz 1.5 GHz

less than 16% variance (with normalization)(without normalization)

Results and Validation

● Causal profiling can be used in what-if analysis but it is not scalable

● Prove of concept and the necessary condition for perseverance of what-if graphs

● Introduce Virtual Causal Profiling and implement VCoz to scale experiments and cross-platform
performance measurements

● Validation and accuracy analysis of VCoz by running experiments on different workloads

14

Conclusion

Thanks for your attention!

Behnam Pourghassemi Prof. Aparna Chandramowlishwaran

Personal webpage: http://newport.eecs.uci.edu/~bpourgha/

Email: bpourgha@uci.edu

15

HPC Forge: http://hpcforge.eng.uci.edu/

Prof. Ardalan Amiri Sani

http://newport.eecs.uci.edu/~bpourgha/
http://newport.eecs.uci.edu/~amowli/hpcforge/

