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Input-Queued Switch

» Input-queued switches are widely used in computer and communication networks

= 3 X 3 Input-queued switch: s




Input-Queued Switch

= Consider input-queued switch with »n input ports and n output ports

= Each input port has queue associated with every output port that stores packets
waiting to be transmitted

» Simultaneous transmission of packets is possible only from certain subsets of the
gueues, as defined by following constraints:

= Every input port can transmit at most one packet
= Every output port can receive at most one packet

» \WWe call the subsets of queues that satisfies these constraints basic schedules



Analysis of the Input-Queued Switches

Main focus of previous research: Throughput optimality

» E.g.: Tassiulas and Ephremides (1992); McKeown, Anantharam, and Walrand (1996)

Study of delay optimality focused on MaxWeight and heavy traffic regime

» E.g.: Kang and Williams (2012); Maguluri and Srikant (2016); Lu, Maguluri, Squillante, and Suk (2018b)

Optimal policy obtained in 2x2 case, reveals some different structures (e.g. switching curve)

= Lu, Maguluri, Squillante, and Suk (2018a) for original stochastic system under general linear-cost objective function

» These optimal results and structures can be generalized to the n x n switch only in special cases, and not in general

Fluid models

= E.g.: Shah and Wischik (2012) and, more recently, Sharifnassab, Tsitsiklis, and Golestani (2020) on fluid models
under MaxWeight

= General linear fluid flow cost structures



Overview

» Stochastic Model of Input-Queued Switch
» Fluid Model for Input-Queued Switch and Optimal Control Problem
= Difficulty of Optimal Control Problem
= Optimal Control Algorithm
= Critical Threshold
» Main Theoretical Results
= Stability
= Optimality
= Computational Experiments

= Conclusion



Stochastic Model

= Queue with input port i, output port j is indexed by (i,j) € | .= [n] x [n]

= Time is slotted and denoted by a nonnegative integer t € Z, == {0,1, ... }

= Service time of packets is 1 time unit

= At each time t, scheduling policy selects a basic schedule such that packet from

nonempty queue in the schedule is served
= Basic schedule formally depicted by n?-dimensional binary vector s = (Slf)ue
such that s;; = 1 if queue (i, /) is in schedule, and s;; = 0 otherwise

= Set of all basic schedules [: BEREERISIZEE YR ESY T s(i,j) < 1.Vi,je an}

Jje |n|




Dynamics of Stochastic Model

0,;(t): length of queue (i, /) at beginning of i-th slot; O(t) = {0;;(t)}
A;j(t) € Z,: number of arrivals to queue (i, ) up to time t, where

« {A;(t+ 1) — A0} iid. with E[A(t + 1) — A®)] = 4,

= arrival rate vector 4 € R'f'

= D.(t): Cumulative number of time slots devoted to basic schedule s until ¢:
ID@OIl =t ID(E+1) —DOI =1
= Queueing dynamics:

Q(t) = Qo + A(t) —D(H)A

where A is the |1| x |J|-dimensional binary schedule-queue adjacency matrix:

As i,j) = Sij



Input-Queued Switch Scheduling: Fluid Model

Consider r-scaled process: (9" (t), A" (t), D" (t)) := (%Q(rt),%c/l(‘rt),%l)(rt))

= lim sup [[A"(t) —Atll =0, Dj;(t")—Dj;(t) <(t—t)

= 0<t<T

Convergent subsequence of Q" (t) converges to Fluid Model g(t) such that
q(t) =1 —a(D)4,
q(t) =0, lo@®Il=1  a() =0
Fluid-level schedule is a convex combination of basic schedules
(q(©), a(t)): Fluid-level admissible pair

a(t): Fluid-level admissible policy



Fluid Model Optimal Control Problem

= ¢ = {c;;}: cost coefficient vector
= Define total discounted queue-length cost over the entire time horizon under
a fluid-level admissible policy {o(t) : t € R, } with initial state q,:

Fluid Optimal Control Problem
minimize j e Btc.q(t)dt
0

qgt) =1—0o(t)A
q(t) =0
o(t) =0
le(OIl =1




Difficulty of Optimal Control Problem

= While optimal control framework enables with relative ease derivation of
optimal policies for fluid models of basic queueing networks, situation for
Input-queued switches is quite different and much more difficult

= For example, arrival rate vector 4 and initial queue length g, s.t. 4;; = 0,Vi €
[n],Vj € [n]\{1}, then equivalent to n parallel queues with one server
In this case, cu-policy well-known to be optimal policy that minimizes
discounted total cost over infinite horizon in both stochastic and fluid model
However, cu-policy is not always stable even in the fluid limit model

= As another example, Max\Weight Scheduling Algorithm is stable
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Example: Unstable Case of cu-policy

= Maximum Basic Schedules:

N (1,),23)}, {1.2).2, 1)},
] o2 N EERCRAC)
= cu-policy:
s I s L0 0.45 x {(1,2), (2,3)}
: +0.45 x {(2,1)}
2,3
Cry=10 . f#fﬁj?cl;?n:i rrlnoc':dael\llvays stable even
L



Optimal Control Algorithm: Critical Threshold

Fluid Optimal Control Problem

» Forgandr e R,, define o0
minimize f e Ptc. q(t)dt

Associated LP(q, 1)

maximize (Ac) - o — 1||0||

0
qgt) =1—0a(t)A

q(t) =0
o(t) =0
le@®Il =1

(O'A)ij < Al] V(l,j) with ql] =0

* LP(g,7) maximizes the weighted outflow, subjective to feasibility constraint
« 7 :the multiplier of the constraint ||o(t)|| = 1
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Optimal Control Algorithm: Critical Threshold

Fluid Optimal Control Problem
» Forgandr e R,, define o0
minimize f e Ptc. q(t)dt
0

Associated LP(q, 1)

maximize (Ac) - o — 1||0||

qgt) =1—0a(t)A
q(t) =0
o(t) =0
le@®Il =1

(O'A)ij < Al] V(l,]) with ql] =0

= |f 3™ an optimal solution such that |[|c*|| = 1, T is called a
of state q

Theorem
There always exists a critical threshold for any state q.

The critical thresholds can be found via a set of search algorithms.




Main Results: Optimal Control Algorithm

Algorithm 4 Optimal Control Algorithm for initial state q;_;

:Setk=0,fp=0,and g} = q;-
2: while ;. < oo do
Let 13 be the output of Algorithm 3 with input g = q;k
Let yi be the optimal value of Problem (Pg ;) with g = q;k and
T =T
Find a point v € ':':glj:q;k, Tg, ¥ ) in (8)
Define p* € R by
‘() = ] vi(s) ifsely
psh= '|Il.'l otherwise

Set

fee1 = I

+mmny ————
| (e A) p)— A p)

:pell] ;. (p* A p)—Alp)= 0 :
k F.

Sat P_,Il” — Pt for t I'fj t,i-;+l.::| and q; = q;k + I.f - i‘;hl - “l —
ti)u"Afor t € [tr, trsi]
Setk=k+1

Algorithm 3 Algorithm to find a critical threshold at state g

o

1:
3
4:
5

Input: State g Output: a critical threshold r = 7(q)
Set m be the output of Algorithm 1 with input g

: if m = 0 then

return 7,
else
return the output of Algorithm 2 with input I = —-m

Algorithm 4: optimal control algorithm
= Starting at any g, find the critical threshold

» Follow the allocation rule from until
one of the queues reaches zero;
= Repeat

Algorithm 3 is the mega-algorithm for using
Algorithm 1 and 2 to obtain the critical threshold
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Critical Threshold: Example

If forall i,j

Associated LP(q, 7)

maximize (Ac) - o — 7||o||
c=0

= Critical threshold T = max{c-s:s €l}and ¢* = argmax{c-s :s € I}

= Coincides with the cu-rule

* In the 3x3 case where and the critical threshold
IS given by and the optimal policy is given by:



Main Results: Optimal Control Algorithm

= At state g, use optimal solution o* of associated LP such that ||c*|| = 1 for
critical threshold t

Theorem (Stability or Throughput-Optimality)
If 2 4i; <1and X ;4; <1forallij, the above set of algorithms empty the

system in finite time

Theorem (Optimality)
If 2 4i; < 1land);4; <1forallij, the above set of algorithms provides

an optimal solution to the Fluid Optimal Control Problem



Main Results: Optimal Control Algorithm

= At state g, use optimal solution o* of associated LP such that ||c*|| = 1 for
critical threshold t

Theorem (Stability or Throughput-Optimality)
If 2 4i; <1and X ;4; <1forallij, the above set of algorithms empty the

system in finite time

Main idea: Caratheodory’s Theorem key to construct a Lyapunov function



Main Results: Optimal Control Algorithm

= At state g, use optimal solution o* of associated LP such that ||c*|| = 1 for
critical threshold t

Theorem (Optimality)
If 2 4i; < 1and X ;4; <1forallj, the above set of algorithms provides

an optimal solution to the Fluid Optimal Control Problem

Main idea: verify the necessary and sufficient condition for Pontryagin’s

Maximum Principle
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Necessary and Sufficient Conditions

Admissible policy a*(t) is optimal solution to Fluid Optimal Control Problem
if Ip(t), n(t) such that

= ¢*(t) € argmax{cgAp(t):0 = 0, ||| = 1}

" p(t) —Bp@) =c—n()

" g7 () n()=0,q"(t) 20,n() =0

= liminf p(¢) - (q*(t) — q(t)) = 0 for any fluid model q(t)

n(t): solution to the dual problem of associated LP

T
p(t) = j e(T=t)(c —n(t"))dt




Computational Experiments

= Compare through simulations performance of our optimal control algorithm
with that of cu-rule and max-weight scheduling algorithm in fluid model

» Fix number of input and output ports to be n € 7Z, and fix throughput « € (0,1)

= Forl =i,j =n,randomly generate costs ¢;; € (0,1) and arrival rates /;; €
(0,1) such that

(n n )
max { T AiLk). Z Alk.j) : i.j € [n] } = K. (24)

)
Vk=1 k=1

We also choose an initial queue length to be an integer between 1
and 100 uniformly at random for each (i, j) € [n] x [n].
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Total Cost

Computational Experiments
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Computational Experiments
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Figure 3: Performance Comparisons of Total Costs under Optimal Policy (Algorithm 4) and cpu-rule




Conclusion

= Considered fluid model of general n x n input-queued switches where each fluid
flow has associated cost

» Derived optimal scheduling control policy under general linear objective function
based on minimizing discounted fluid cost over infinite horizon

= Optimal policy coincides with cu-rule in certain parameter domains

= In general, optimal policy determined algorithmically by constrained flow
maximization problem whose Lagrangian multipliers of some key network
constraints were identified by set of carefully designed algorithms

= Computational experiments within fluid models of input-queued switches
demonstrated significant benefits of our optimal scheduling policy over alternative
policies such as the cu and max-weight scheduling policies



IBM Research

Optimal Control of Fluid Models of
Switched Networks

Y. Lu, M.S. Squillante, T. Suk

Mathematical Sciences
IBM Thomas J. Watson Research Center



