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Layers
TECHNOLOGY GLOBAL DATA/
TRENDS STORAGE SCALING
AND PROPERTIES
SERVER AND CPU / MEMORY
STORAGE SCALING COMPLEX
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Lenses

q Data-focused interplay of the 3 things you can
do with data:

* Process it
 Move it
» Store it

Q Al-infused decision making using real-time data
vs. HW/SW designer making choices

QOpportunities for performance/energy models
& metrics



How data gets processed, moved, and stored at the component

level?

New data can be processed, moved and stored. Semiconductors play a key role each.

Edge to core to
multi-cloud

Multiple servers
and storage

CPU-memory
complex

- Fundamental
building blocks

Semiconductor
Copper / Optical
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Semiconductor

Optical Semiconductor

Process

Sto re Semiconductor

Magnetic
Optical
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48 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp
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Microprocessor Cost Trends

Costs per transistor no longer going down in leading edge
semiconductor process

* Moore’s Law “demands”.
1. 2X transistors per wafer every 2 years
2. Cost per million transistors goes down ~50%
3. Less power from smaller transistors

» But costs & power are not coming down as fast
with process shrinks

» Wafer fabrication costs are higher
« Higher resistance of thinner traces reduce power benefits
+ Chips with “dark” silicon to handle physical limits
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Wright’s Law — or “Experience” Power Law
As Moore’s Law slows down, Wright's Law may provide a better fit

fO) =x7"
PN @ = fe027

o
N
o

« Wright’s Law: For every doubling of cumulative units
produced, cost to manufacture one unit will fall by a
constant percentage (factor 27"%).

Relative cost per unit

0.05}
» Unit costs depend on the unit production curve over 5 10 15 20

time u(¢) Cumulative Number of units produced

* When unit production grows exponentially over time, the
unit cost using Wright's Law over time is the same a N ! If unlit produlction
Moore’s Law

» When unit production grows linearly, unit costs follows a
power law over time

rows exponentially
If unitiproduction
grow linearly

x 1/t?

0.50¢

* Implications
 Chip designs leveraging existing process node

 Creates opportunities for scaling via new computer 0.10¢
architectures 0.05 _

* New breakthrough? 4 6 8 10 12

Relative cost per unit
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Emerging CPU and Memory Trends

Moore’s Law scaling slows

* Manufacturing improvements
continue

» Better packaging: Chiplet
approach to overcome single

monolithic die challenges for
3D scaling beyond 5nm

* Novel domain-specific
architectures, esp. Al.
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General purpose CPU becoming
system bottleneck

« Composable architectures
(including disaggregated
resources) via SW APls

» Scale-out architectures for
public and private clouds

» Scale-up with HW accelerators
and domain-specific
architectures: GPUs, Al/ML,...

Persistent memory

* Memory-based computing
provide synchronous access for
simpler / efficient programming

 Multi-TB scale

Processing inside memory
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Emerging storage media trends

Ongoing Flash $/GB reduction by adding layers, but new breakthrough needed to reduce cost per Flash cell

Bring compute closer to media to take advantage of high

£ New approaches for differentiated  internaiBw

Q Workloads \é\;itdae;:tcsloption of Al/ML techniques for large immutable

Flash cost reduction via stacking layers continues

: Cost reduction from QLC with endurance trade-off
I\_\& COSt/GB redUCthn Need breakthrough media to challenge NL-SAS HDDs in
$/GB
~ Low latency media (better latency ~ A°2read cache

As a "write absorber”

T-. than TLC NAND FlaSh) As network-attached replacement for server-side SSDs
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Data Access in Memory / Storage Hierarchy

PERFORMANCE N,
< Accessed as memory /,) Accessed as storage >
1-10 ns 50/0\ns?

/

S0ns < DRAM speed ’\/\
DDR
50-100ns wrRaM  DRAM  3DXP
100-500ns DIMM '\éﬁ"i\?ﬁ 3DXP Combo SSDs
Small capacity SSD . .
Persistence Flash capaci \ ey Capacity optimized
1-10us High speed DRAM speed NAND DA

ms

MBs 10-100GBs 1TBs 1-10TBs 10-100TBs
CAPACITY (and bytes/$)
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Emerging Networking Trends

Network scaling continues upward trend

- = . L|nk SpeedS Cont|nue upward trend Switc.:h ports going .to 400 GDbE, us.ir?g 4 lanes of 100G ?erDes
:E: Public clouds creating faster transitions to next generation
T beyond 100 GbE Next step is 800 GbE
V Smart N I CS W|th prOCGSSIng O.ffer HW offload capab.ility and relatively.easy programmat.)ility

. Direct placement benefits of RDMA on client and storage side
ca pa b I I |ty Security features
— NVMe-oF for storage connectivity
] RoCEv2, TCP-IP for most robust transport layer

scaling well to 1000’s of nodes
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How data gets processed, moved, and stored across the Edge,
Core, Multi-Cloud

How might we find the “best home” for a workload across Edge, Core, and Multi-cloud?

Apps at the edge for real-time
Apps in core DC for security/compliance
Apps in cloud for scale, cloud native

Process Containers and serverless FaaS
v/

Data fabric to allow movement

across edge, core, multi-cloud Most data created at the edge
Move the right data, to the Move Sto re Endpoints, Cloudlets
right place, at the right time! Core for sovereignty

Increased cloud storage for consume
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Global Data Creation and Installed Storage

Data growth continues in the amount created and the amount stored

“‘Data Arrival Rate”
Increasing

“Queue Length” =
Data in installed base

2008 2012
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2016

All Data created in 2020

>

2020

2024

HDD
SSD
NVM
Optical
Tape



Example: Evolution of “data reads per day” on a set of drives

Post-processing the evolution of drives provides useful insights across the population. Real-time analysis of
collective drives’ lifetime of experience enables better prediction and decision making.
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How data gets processed, moved, and stored across server
nodes?

v Bottleneck for many workloads
Process in memory / storage / network
Process Distribute processing across servers
v

Data movement getting faster

PCleG4/5 or Ethernet Move Sto e Rapid shift to SSDs for high IOPS

L t S ener
©8s movement save % Unlock internal memory/SSD BW
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What Type of Processing is being Offloaded from x86 CPU?

Pensando Distributed Services Card: 100 GbE Networking and easy programmable offloads, but with ASIC-like
speeds

Process executing x86 Instructions

x86 CPU
Storage Controller

BULK DATA & TRANSFORMS
with DATA INTEGRITY

ammm——) C——) =) I
Pensando
ARM Cores P4 Engines HW Engines 100 GbE PCle Card
Shared Memor
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How does the Processing Offload to Pensando help Performance?
Moving Bulk Data & Transforms from Main Memory to Pensando card: Reduces CPU usage and latency

Offloading Bulk Data Transforms:
Saves CPU cycles directly
Reduces memory BW

Storage Helps maintain consistent latenc
CPU cores P ’

BULK DATA & -

TRANSFORMS 2 L
o variability —
© .
— higher latency
2
T

100GbE i

Pensando

Card Latency

QEE

0.0 02 04 0.6 0.8 1.0
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Y-axis, Vertical Scaling: Offload “Bulk Data & Transforms” for Storage

ci c2 c3 c4

D
Storage Efficiency

» Compression, Compaction
* Deduplication / Hash

Data Protection
e Checksums
* RAID operations

Security computation
» Encrypt data at rest
» Encrypt data in motion

Networking
- NIC, RDMA

’/
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“Data touch” / CPU-intensive functions
move to specialized HW on “Fabric”

Pensando’s card with P4+ engines, HW
engines, and ARM cores

Benefits compound via ONTAP software ...

Primary data snapshots, clones on box

Preserve storage efficiency for secondary
data services

Tiering data to Public Clouds



Z-Axis, Scale-out for High-Tech Industry Applications

FlexGroup on A400 with Pensando for clustering: a scalable, high-performance data container

Apps for electronic design automation, Linear scale for performance and capacity

high-tech, oil and gas,

media and entertainment Operational simplicity

« Single mount point with automated load
and space distribution

Consistent high performance

» Predictable, consistent low latency
 All-flash containers

High resiliency
« NetApp® ONTAP® nondisruptive operations

Z-axis

C c € ¢C

d1 d2 d3 d4
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X-axis, Horizontal Scaling - Accelerate Your Global Namespace

FlexCache volumes distributes hot data over Pensando cluster ports

NetApp® FlexCache® volumes

« Sparsely populated volumes that can be cached on the same
cluster or a different cluster as the origin volumes to
accelerate data access

D D D
@ Performance acceleration for hot volumes

» Cache read and metadata for CPU-intensive workloads
* Provides different mount points to avoid hot volumes
« Cache data within the cluster (intra-cluster)

X-axis C C C C

D

Cross data center data distribution
» Cache across multiple data centers to reduce WAN latencies
* Bring data closer to compute and users
- Between Netapp AFF, FAS, or ONTAP Select systems
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Scale in All 3 Dimensions — System & Data
Scalability = Ability to handle a growing amount of work (CPU and Data)

y-axis Near Infinite Scale
cl c2 c3 c4 /,:___________________________________:’
i T z-axis
@ -Splitby function, service, _________ :
¢ data affinity ! ! !
| i o
y-axis Functional Decomposition | | \%\9 ; -
Scale by splitting into different things : ! (’\@+ !
Components: Modules/Microservices i i (oo ' i
: EPRSING ! :
: 1o & ! !
: (x\""\ © ! :
1 Q@ Q\<\ 1 :
i N . :
0% 9% Splitby users, large modules, hash,..
i ,0""\660* ,
i e
C ‘““ _______________________________ ‘:No splits X-axis

One system & data
D monolithic architecture

Source: the Scale Cube http://theartofscalability.com/

M NetApp

21

© 2020 NetApp, Inc. All rights reserved. Naresh Patel

Many nodes each a clone, load balanced
Data reads from replicas; write to one node

x-axis Horizontal Technical Duplication
Scale by cloning pieces of data
Technical Architecture Layering

d1

C

D

d2

d3

d4



How data gets processed, moved, and stored inside the CPU-
Memory Complex

v Bottleneck for many workloads
v Decentralize processing
Process Computational memory
v
Need energy focus Move Sto re Memory bound by latency
Data hops are “hidden” Persistent memory for capacity
Perf and energy metrics CXL for large memory spaces
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CPU Pipeline is stalled for >80% of the time for many workloads!
“100% CPU Utilization” hides the underlying bottlenecks — cache hierarchy and memory latency.

+ Many data center workloads have low instructions

B Retiring BN Bad speculation per cycle
[ Front-end bound EEE Back-end bound » Back-end bound — waiting to fill caches / memory latency

o atﬂs — 0 * Dependent data accesses — serial memory accesses
igtable
disk
flight-search

gmail

» Characteristics of data intensive workloads

in%?ﬁ%? * Request and response over the network

i"gggmgi - + Simultaneously access many contexts (fan in)

search2 « Areas of "tax”: Protocol buffers, RPCs, memory moves,

search3 . . .
video compression, memory allocation, hashing

400.perlbench

445 gobmk « Memory latencies going higher with bigger sockets

471.omnetpp * Moving these "data intensive” functions away from CPU to

433.milc I N ——— ethernet fabric-attached offload HW
0 20 40 60 80 100 120

Pipeline slot breakdown (%)

* Move processing into memory for better latency and energy
efficiency

3 * Symmetric Multi-Threaded cores
Source: S. Kanev et al. Profiling a warehouse-scale computer, ICSA15
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MB/G/1 Energy-Performance Queue with Batched Arrivals

Example: EP Queue + Reinforcement Learning to make power usage choices (and service times) with energy
constraints

Random Arrivals with rate A of batched requests
Specified batch size distribution (Pr(1), Pr(2), Pr(3),...)
Specify n general service time distributions
Different for each queue depth (1, 2, 3,...,n)

Same service time distribution for queue length n, n+1,..

System powers-down when queue is empty
(power-down time distribution)

System powers-up on arrival of new item to empty queue
Response time or Latency (power-up time distribution)

MODEL INPUT: arrival rate, 1 discrete distribution, n+2 continuous distributions (n service times, POWER-
UP, and POWER-DOWN times) and power usage for ON, OFF.

MODEL OUTPUT: response time distribution (means, variance, and higher moments), energy usage
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Summary - . Process wwommmme
= Layers x Lens

g Mooy Teode Sy oy e o B ——

NNt e oty
Lo e
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