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Why Do We Care About Scheduling?
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An Early (Deterministic) Scheduling Problem

Processing time I/; Processing time I/,
Processing rate u; = 1/V; Processing rate u, = 1/,
Waiting cost ¢4 Waiting cost ¢,

Objective: Determine the schedule that minimizes the waiting cost.

T hede | ot

(112) C2V1
(211) CIVZ

We prefer the schedule (1,2) iff c,V; <c, V5, or, equivalently, cou, < cqu4.
| |
I
The very appealing cu rule:
Order classes and give priority in that order.
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Reference: Smith (1956).



The cu Rule

Optimal

In the Stochastic Setting; Pinedo (1983)
When there are due dates; Smith (1956) and Pinedo (1983)
Multiclass (mc) M/G/1 with feedback; Klimov (1974)

Asymptotically Optimal

Convex delay costs in mc G/G/1; van Mieghem (1995)
Heterogeneous servers in mc G/G/N; Mandelbaum and Stoylar (2004)
Server pools in mc G/M/N; Gurvich and Whitt (2009)

Q: What happens when jobs will not wait forever?

We will study this question in a many-server queue with abandonment.

4/25



The cu Rule when Jobs may Abandon
|4 | %2 |4
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HL

p
Atar, Giat, Shimkin (2010) The ¢;u;/6; rule asymptotically minimizes long-run

average cost in a «wo ueue the overloaded regime (6]- =¢ + Hjaj).
\.

The cu and ¢u /0 rules is a static priority (SP) scheduling policy in the sense that
the decision of who to next serve does not depend on system state.
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Our Research Question: What is an asymptotically optimal policy?
(Is SP still asymptotically optimal?)

N 9N N 9N
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Assume overloaded regime.
Admissible scheduling policy is HL, non-anticipating, does not have wild oscillations.

» Connection to learning: Should be easier if an ao policy has a simple form.
Any questions? 6/25




Operating under an Our Approa ch Functional Law of Large

Unspecified Admissible Numbers Approximation to
Scheduling Policy the Stochastic System
\ ticl N— oo /
Multiclass LLN Scaling Fluid
G/GI/N+GI > Model
Queue PW 2020, Theorems 1 and 2
Proposed Policy Class
PW 2020, Theorem 3 \ | Fixed Point Solutions
\ 4
N— oo :
-F
G/GI/N+Gl LLN Scaling F|UId.
Queue *( Invariant

Steady-State States

!

Fluid Control Problem
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Talk Outline

1. Provide a fluid model relevant for a large class of non-preemptive HL scheduling policies.
» Show limit points of scaled state processes are fluid model solutions (PW, Theorem 1).
» Establish tightness (PW, Theorem 2).

2. Formulate and solve a fluid control problem for an overloaded system.
» Characterize fluid invariant states (PW, Proposition 1).
» Provide weak convergence theorem for appropriate scheduling policy (PW, Theorem 3).



Some Works Related to Step 1
(Provide fluid model relevant for a large class of HL scheduling policies.)

e Single Class Fluid Model for G/GI/N and G/GI/N+Gl.
— Whitt (2006) proposed a Fluid Model.
— Liu and Whitt (2012) calculate fluid performance measures.

— Reed (2009) and Kaspi and Ramanan (2011) proved convergence,
without abandonment.

— Kang and Ramanan (2010 and 2012) proved convergence, with
abandonment.

— Provided the framework for approaching the multiclass case.
e Multiclass Scheduling.

— Atar, Kaspi and Shimkin (2014) analyzed SP for multiclass G/GI/N+Gl,
and show asymptotic optimality of SP for G/GI/N+M.

— We generalize to a large class of admissible policies that include SP.



The State Space

Time elapsed since last class j arrival.

The number of class j customers in the system.

/

(aV, xN,vN, ).

\/

Measure-valued processes tracking the
age-in-service and the potential queue.

Primitive inputs:

e Arrival counting processes for each class;

e Sequence of i.i.d. service times for each class;
e Sequence of i.i.d. deadlines for each class.



The v Measure (for given Class j)

Note: Depends on Scheduling Control.
N

(1,vj(t))=f0 v; () (dx) =;/4 and Z (L,vi(t)) <N
j=1

' Customer is no longer tracked once the time spent
' being served exceeds that customer’s service time.

_______________ 1_____________________________________________I

}Q ‘—o @
\
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0 Time since service began.

\ }
f

Each dot is a unit atom whose position represents the time elapsed
since a customer began service, and shifts to the right at rate 1.




The 1 Measure (for given Class j)
Note: Independent of Scheduling Control.

e o o o o e — — ——— — — — — — — ——— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

i Customer is no longer tracked once the time elapsed
' since arrival exceeds that customer’s abandonment time.

| The HL customer
: [
o @ o
I

T
! N x;(t)

0 Time waiting.

Customers that have
entered service }

\ Customers in queue

|

Each dot is a unit atom whose position represents the time elapsed since a customer
arrival, and shifts to the right at rate 1 until its potential abandonment time.
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The Fluid Model State Space and Auxiliary Functions

Number of fluid in system Age in-service measure Potential queue measure
For (X v 1), define forall jand t = 0,
B;(t): = (1,vj(t)) (Proportion of class j fluid in service);
Service distribution hazard rate
§j(u): = (i:f]s, vj(u)) = fooo ki (x)v; (w) (dx) (Instantaneous departure rate);
D;(t):= fo 5 (u)du (Cumulative departure process);
Q;(t):= X;(t) — B;(¢t) (Queue-length process);
)(j(t): = inf{x = 0: (1[0,x],77j(t)) > Qj(t)} (Class j head-of-line wait time process);
R;(t):= f < [0.%; (% ,77] (u)> du (Cumulative abandonment process);

Abandonment distribution hazard rate

K;(t):= B;(t) + D;(t) — B;(0) (Cumulative entry-into-service process).
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A Fluid Model Solution (Not Unique)

Non-negative, continuous, and non-decreasing J-dimensional function having domain R ; for example, Ej(t) = A;t for all j.

|

Let E be an arrival function. Then, (X, v,n) is a fluid model solution for E if the following hold.

(1) For each j, K; is non-decreasing and Z] . Bj(t) € [0,1] forall t = 0.

(No service rule specified.)

(2) Foralljandt = 0, X;(t) = X;(0) + E;j(t) — R;j(¢t) — D;(£),0 < Q;(¢t) < fooo n;(dy), and finiteness.

(3) Forallj, f € C,(]0,)),and t = 0,

Service ccdf.

t
(F. v () = (£ +0) ’(()) v,-<o>> + | e w6 - war e
J
GA(- +t t _
(f,n;@®) ={fC+0) ’Gq(.)),nj(0)>+J[) f(t — WGPt — w)dE;(w).
J

Abandonment ccdf.




Non-Policy Specific Convergence

Assume
. EN . EY (1) . .
. Alllm ~ = E almost surely, ]\lllm E —| = IE[Ej(t)] ,forallt > 0, and E is continuous;

 Entry-into-service process oscillations can be controlled;
e Convergence of initial conditions and “goodness” of initial fluid state;
e Hazard rates of abandonment and service time distributions are either bounded or lower semi-continuous;

PW 2020 Theorem 1
Suppose that (X, v, n) is a distributional limit point of a sequence of
fluid-scaled state processes. Then, (X,v,n) is almost surely a fluid model solution for E.

PW 2020 Theorem 2
A sequence of fluid-scaled state processes is tight.
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Talk Outline

>-Show-limitpointse Hed-state processesare-tiuid-moaelsolutions{PW,-Theorerr
»>-Establish-tightress{PW. Theorem-2}

/1.
E;j(t) = Ajt fort = 0 and all j and Z§=1_]. > 1.

/ ’
2. Formulate and solve a fluid control problem for an overloaded system.

» Characterize fluid invariant states (PW, Proposition 1).
» Provide weak convergence theorem for appropriate scheduling policy (PW, Theorem 3).

Any questions?



Fluid Model Invariant States
Definition (Feasible server effort allocation).

e B={bew,b </, 3 b <1)

PW 2020 Proposition 1
For each b € B, there exists an invariant state such that bj

is the proportion of server effort devoted to class j, and
A _
Q;(t) = f] ( 0 ]) forall t = 0, where f;(x) = T ((({]“) 1(x)).

T ]

Mean patience time.

Abandonment stationary excess cdf. Abandonment cdf.

Intuition: If exponential abandonment distribution, then

Ai (A — bil;
2 (252 =5 - ) = a

FIowbaIanceimplleS/lj biuj = 0;q;.
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Fluid Model Invariant States
Definition (Feasible server effort allocation).

= {b € ‘R{r:bj < Aj/ﬂjr2§=1 bj = 1}

PW 2020 Proposition 1
For each b € B, there exists an invariant state such that bj

is the proportion of server effort devoted to class j, and
A _
Q;(t) = f] ( 0 ]) forall t = 0, where f;(x) = T ((CT?]“) 1(x)).

T J

Mean patience time.

Abandonment stationary excess cdf. Abandonment cdf.

How good is using the function f; to approximate the class j mean steady-state queue-length?
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Performance Measure Approximation
Assume Static Priority Scheduling.

A two-class M/LN (1,4)/100 + LN (1, v) queue,
with each class having arrival rate 60 per hour.

Low Priority Queue Size
45
40
35

30

25

2

15

| il
0.2 0.5 1 2 5

Variability

o

o u O

H Predicted M Approximated

(High priority queue has predicted size 0, and simulated
size about 1.5 for all values of the variability v.)

Note that queue size decreases as variability increases.
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A Fluid Control Problem

. | J A (Al —biu;
m =‘3‘el£‘zjzlcfg—jﬁ(] ,1].1 ])Jfaj\(ﬂj—bjﬂj}
| |

Queue Abandonments

When is the solution consistent with static priority scheduling?

* If there is no holding cost; that is, ¢; = 0.
O Digression: Return to the question from earlier in the talk regarding implications for learning.

e |f the abandonment distribution has increasing hazard rate (IFR), then
O fjisconcave, and m”* is achieved by a feasible vertex.
0 |.E., the solution motivates a static priority policy.

e |f the abandonment distribution has decreasing hazard rate (DFR), then
O fjis convex, and m™ could be attained by a non-vertex feasible point.
O |.E., the solution motivates partially serving classes (not static priority).
0 (We have numeric examples with non-vertex feasible point solution.)



Other Examples when Static Priority Scheduling is not Optimal:
Non-Overloaded Regimes

Exact MDP Analysis

— Down, Koole and Lewis (2011)

Single-Server System in Heavy-Traffic Asymptotic Regime

— Ata and Tongarlak (2013)

— Kim and Ward (2013)

Many-Server System in Halfin-Whitt Asymptotic Regime

— Harrison and Zeevi (2004)

— Atar, Mandelbaum and Reiman (2004)

— Kim, Randhawa, and Ward (2018)

Many-Server System in Overloaded Regime

— Long, Shimkin, Zhang, and Zhang (2020) for GI/\M/N+Gl

Remaining Q: How do | schedule so as to achieve b?



Weighted Random Buffer Selection (WRBS) Scheduling

N 3N N 7N
1 ‘l;l ) ;ll l l?z ) ;lz l l;}v; ;l?J
Gg: 1/92! Cz, A
/ / HL /'
a
(;1_ il//fal_ C1, A1 ° ° - (i{L’jlllézl’(;I’ C?I
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GG 1w [6s e G, 1/

A newly available server next serves class j with probability p; > 0, where Z]Ll pj = L
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Policy Specific Convergence

Assume
. EN . EY (1) . .
. 1\l/1m —~ = E almost surely, Alllm E —| = E[E;(t)],forallt = 0,and E is continuous;

* Entry-into-service process oscillations can be controlled;

e Convergence and “goodness” of initial conditions;

 Hazard rates of service distributions are either bounded or lower semi-continuous;
e Hazard rates of abandonment distributions are bounded.

PW 2020 Theorem 5
Suppose that the queue operates under WRBS policy p. Then,

XN VN nN
(N»N;N)=>(X»V»77)35N—>°°»

where (X,v,n) is almost surely a fluid model solution for E that has unique law.

Fluid-scaled state process

PW 2020 Theorem 4

For any non-idling b € B, the WRBS policy with p; = = kg - has invariant state defined by b.
k=1 HkPk

and many idling.

To minimize cost asymptotically, use b that solves the fluid control problem.
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General Roadmap for Proving Policy Specific Convergence:
Application of Theorems 1 and 2

Add policy specific equations to the multiclass G/GI/N+GI queue that uniquely characterize the dynamics.
(Note: The arrival process may have time-varying rates, as is true in many application settings.)

4

Add policy specific equations to the fluid model, and prove uniqueness of fluid model solutions”.

4

Prove that fluid limit points of fluid-scaled state processes satisfy the fluid model policy specific equations.
(Theorems 1 and 2 show that all other conditions in the definition of a fluid model solution are satisfied.)

PW 2020 Theorem 3 [The Key to Proving the Weak Convergence on the Previous Slide]
Given a fluid arrival function E, a fluid model solution for WRBS policy p is unique for each initial state.

. . . . e ere . 24/25
“For a given arrival function and given initial condition. /



Summary and Work-in-Progress

tic N= <0
Multiclass LLN Scaling Fluid —
+ > .
G/Gl/N+Gl PW 2020, Theorems 1 and 2 Model  Functional Law of Large
/' Queue ’ Numbers Approximation to
Operating under an WRBS Policy Class / the Stochastic System
Unspecified Admissible
Scheduling Policy PW 2020, Theorem 3 \ v Fixed Point Solutions
v
N— oo :
+
G/GI/N+GI LLN Scaling FIUId.
Queue *| Invariant

Steady-State States

!

Fluid Control Problem

Q: How to establish asymptotic optimality? "

Thank you and questions. 25/25



Example with Non-Vertex Optima

. 'Z] Ajf(l bf>+ (A - biw;)
m” = min ¢c;—fill—— ai(A; — biu;
bEB] j=1 9] J p] J\""J ]'u']
! J |
Queue Abandonments
Parameters: py = p, = U4 = U, =¢y =¢c, =1landa; =a, =0.

!

Then, b, = 1 — by, and we have a 1-D problem.

!

Patience densities: Class 2 is exponential(6,);

Class 1 has density 2 for x > 0, which has mean %-

1

The minimizer b, € [0,1] satisfies N by (0>)

0.6

{ 92=3ibl(1+3b1—,/1+3b1). 1 ,

0
1 1.05 1.1 1.15

1.2 1.25 1.3 1.35

(This example is developed by Amber Puha’s student Jacques Coulombe.)



WRBS Policy-Specific Fluid Equations

A specified WRBS fluid model solution also satisfies

p,-fs 1{Q;(w) > 0}dDs(w) < K;(t) — K;(s) < p,-f dDs(w), 1<) <]

S

and

10 =10 -0,®]"

Entry into service process.
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