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Why Do We Care About Scheduling?
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Priority to Q1 Priority to Q2 FCFS Random



An Early (Deterministic) Scheduling Problem
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Processing time 𝑉𝑉1
Processing rate 𝜇𝜇1 = 1/𝑉𝑉1
Waiting cost 𝑐𝑐1

Processing time 𝑉𝑉2
Processing rate 𝜇𝜇2 = 1/𝑉𝑉2
Waiting cost 𝑐𝑐2

Objective:  Determine the schedule that minimizes the waiting cost.

Schedule Cost

(1,2) 𝑐𝑐2𝑉𝑉1
(2,1) 𝑐𝑐1𝑉𝑉2

We prefer the schedule (1,2) iff 𝑐𝑐2𝑉𝑉1 <𝑐𝑐1𝑉𝑉2, or, equivalently, 𝑐𝑐2𝜇𝜇2 < 𝑐𝑐1𝜇𝜇1.

The very appealing 𝑐𝑐𝜇𝜇 rule:
Order classes and give priority in that order.

Reference:  Smith (1956).



The 𝒄𝒄𝒄𝒄 Rule   
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• In the Stochastic Setting; Pinedo (1983)
• When there are due dates; Smith (1956) and Pinedo (1983)
• Multiclass (mc) M/G/1 with feedback; Klimov (1974)

• Convex delay costs in mc G/G/1; van Mieghem (1995)
• Heterogeneous servers in mc G/G/N; Mandelbaum and Stoylar (2004)
• Server pools in mc G/M/N; Gurvich and Whitt (2009)

Optimal

Asymptotically Optimal

Q:  What happens when jobs will not wait forever?

We will study this question in a many-server queue with abandonment.



The 𝒄𝒄𝒄𝒄 Rule when Jobs may Abandon

N Servers
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Atar, Giat, Shimkin (2010)  The �̃�𝑐𝑗𝑗𝜇𝜇𝑗𝑗/𝜃𝜃𝑗𝑗 rule asymptotically minimizes long-run 
average cost in a M/M/N+M queue the overloaded regime  �̃�𝑐𝑗𝑗 = 𝑐𝑐𝑗𝑗 + 𝜃𝜃𝑗𝑗𝑎𝑎𝑗𝑗 .

𝜆𝜆1 𝜆𝜆2 𝜆𝜆𝐽𝐽

1/𝜃𝜃1, 𝑐𝑐1,𝑎𝑎1
HL

1/𝜃𝜃2, 𝑐𝑐2,𝑎𝑎2
HL

1/𝜃𝜃𝐽𝐽, 𝑐𝑐𝐽𝐽,𝑎𝑎𝐽𝐽
HL

1/𝜇𝜇𝐽𝐽 1/𝜇𝜇2 1/𝜇𝜇1

The 𝑐𝑐𝜇𝜇 and �̃�𝑐𝜇𝜇/𝜃𝜃 rules is a static priority (SP) scheduling policy in the sense that 
the decision of who to next serve does not depend on system state.



Our Research Question: What is an asymptotically optimal policy?

N Servers

Assume overloaded regime.
Admissible scheduling policy is HL, non-anticipating, does not have wild oscillations.

HL
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𝐸𝐸1𝑁𝑁, 𝜆𝜆1𝑁𝑁 𝐸𝐸2𝑁𝑁, 𝜆𝜆2𝑁𝑁 𝐸𝐸𝐽𝐽𝑁𝑁, 𝜆𝜆𝐽𝐽𝑁𝑁

𝐺𝐺1𝑠𝑠, 1/𝜇𝜇1𝐺𝐺𝐽𝐽𝑠𝑠, 1/𝜇𝜇𝐽𝐽 𝐺𝐺2𝑠𝑠, 1/𝜇𝜇2

𝐺𝐺1𝑎𝑎, 1/𝜃𝜃1, 𝑐𝑐1,𝑎𝑎1

𝐺𝐺2𝑎𝑎, 1/𝜃𝜃2, 𝑐𝑐2,𝑎𝑎2

𝐺𝐺𝐽𝐽𝑎𝑎, 1/𝜃𝜃𝐽𝐽, 𝑐𝑐𝐽𝐽,𝑎𝑎𝐽𝐽

Connection to learning:  Should be easier if an ao policy has a simple form.

HL

HL

(Is SP still asymptotically optimal?)

Any questions?



Our Approach
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Multiclass 
G/GI/N+GI 
Queue

Fluid  
Model

Fluid  
Invariant
States

G/GI/N+GI 
Queue
Steady-State

N→ ∞

N→ ∞

PW 2020, Theorems 1 and 2

Fluid Control Problem

Proposed Policy Class
PW 2020, Theorem 3

LLN Scaling

LLN Scaling

Functional Law of Large 
Numbers Approximation to 
the Stochastic System

Fixed Point Solutions

Operating under an
Unspecified Admissible 
Scheduling Policy



Talk Outline

1. Provide a fluid model relevant for a large class of non-preemptive HL scheduling policies.
 Show limit points of scaled state processes are fluid model solutions (PW, Theorem 1).
 Establish tightness (PW, Theorem 2).

2. Formulate and solve a fluid control problem for an overloaded system.
 Characterize fluid invariant states (PW, Proposition 1).
 Provide weak convergence theorem for appropriate scheduling policy (PW, Theorem 3).
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Some Works Related to Step 1
(Provide fluid model relevant for a large class of HL scheduling policies.) 

• Single Class Fluid Model for G/GI/N and G/GI/N+GI.
– Whitt (2006) proposed a Fluid Model.
– Liu and Whitt (2012) calculate fluid performance measures.
– Reed (2009) and Kaspi and Ramanan (2011) proved convergence, 

without abandonment.
– Kang and Ramanan (2010 and 2012) proved convergence, with 

abandonment. 
– Provided the framework for approaching the multiclass case.

• Multiclass Scheduling.
– Atar, Kaspi and Shimkin (2014) analyzed SP for multiclass G/GI/N+GI, 

and show asymptotic optimality of SP for G/GI/N+M.
– We generalize to a large class of admissible policies that include SP.
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The State Space

𝛼𝛼𝑁𝑁, 𝑥𝑥𝑁𝑁, 𝜈𝜈𝑁𝑁, 𝜂𝜂𝑁𝑁 .
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Time elapsed since last class j arrival.

The number of class j customers in the system.

Measure-valued processes tracking the 
age-in-service and the potential queue.

Primitive inputs:
• Arrival counting processes for each class;
• Sequence of i.i.d. service times for each class;
• Sequence of i.i.d. deadlines for each class.



Customer entering service has age 0.

Each dot is a unit atom whose position represents the time elapsed 
since a customer began service, and shifts to the right at rate 1.

0

Customer is no longer tracked once the time spent 
being served exceeds that customer’s service time.

The 𝝂𝝂 Measure (for given Class j)
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1, 𝜈𝜈𝑗𝑗(𝑡𝑡) = �
0

∞
𝜈𝜈𝑗𝑗(𝑡𝑡)(𝑑𝑑𝑥𝑥) = 5

4

Time since service began.

Note:  Depends on Scheduling Control.

�
𝑗𝑗=1

𝑁𝑁
1, 𝜈𝜈𝑗𝑗(𝑡𝑡) ≤ 𝑁𝑁and



Customer entering system has waited 0 time units.

Each dot is a unit atom whose position represents the time elapsed since a customer 
arrival, and shifts to the right at rate 1 until its potential abandonment time.

0

Customer is no longer tracked once the time elapsed 
since arrival exceeds that customer’s abandonment time.

The 𝜼𝜼 Measure (for given Class j)
Note:  Independent of Scheduling Control.
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Time waiting.

The HL customer

Customers in queue
Customers that have 
entered service

1, 𝜂𝜂𝑗𝑗(𝑡𝑡) = 5 ≥ 𝑄𝑄𝑗𝑗(𝑡𝑡) and 1[0,𝜒𝜒𝑗𝑗(𝑡𝑡)], 𝜂𝜂𝑗𝑗(𝑡𝑡) = 𝑄𝑄𝑗𝑗(𝑡𝑡)4

𝜒𝜒𝑗𝑗(𝑡𝑡)



The Fluid Model State Space and Auxiliary Functions

Number of fluid in system Age-in-service measure Potential queue measure

Service distribution hazard rate

Abandonment distribution hazard rate

For 𝑋𝑋, 𝜈𝜈, 𝜂𝜂 , define for all 𝑗𝑗 and 𝑡𝑡 ≥ 0,   

𝐵𝐵𝑗𝑗 𝑡𝑡 : = 1, 𝜈𝜈𝑗𝑗(𝑡𝑡) (Proportion of class j fluid in service);

𝐷𝐷𝑗𝑗 𝑡𝑡 : = ∫0
𝑡𝑡 𝛿𝛿𝑗𝑗(𝑢𝑢)𝑑𝑑𝑢𝑢 (Cumulative departure process);

𝐾𝐾𝑗𝑗 𝑡𝑡 : = 𝐵𝐵𝑗𝑗 𝑡𝑡 + 𝐷𝐷𝑗𝑗 𝑡𝑡 − 𝐵𝐵𝑗𝑗(0) (Cumulative entry-into-service process).

𝑄𝑄𝑗𝑗 𝑡𝑡 : = 𝑋𝑋𝑗𝑗 𝑡𝑡 − 𝐵𝐵𝑗𝑗 𝑡𝑡 (Queue-length process);

𝜒𝜒𝑗𝑗 𝑡𝑡 : = inf 𝑥𝑥 ≥ 0: 1 0,𝑥𝑥 , 𝜂𝜂𝑗𝑗 𝑡𝑡 ≥ 𝑄𝑄𝑗𝑗(𝑡𝑡) (Class j head-of-line wait time process);

𝑅𝑅𝑗𝑗 𝑡𝑡 : = ∫0
𝑡𝑡 1 0,𝜒𝜒𝑗𝑗(𝑢𝑢) ℎ𝑗𝑗

𝑎𝑎, 𝜂𝜂𝑗𝑗 𝑢𝑢 𝑑𝑑𝑢𝑢 (Cumulative abandonment process);
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𝛿𝛿𝑗𝑗 𝑢𝑢 : = ℎ𝑗𝑗𝑠𝑠, 𝑣𝑣𝑗𝑗(𝑢𝑢) = ∫0
∞ℎ𝑗𝑗𝑠𝑠 𝑥𝑥 𝜈𝜈𝑗𝑗(𝑢𝑢)(𝑑𝑑𝑥𝑥) (Instantaneous departure rate);



A Fluid Model Solution (Not Unique)

Let 𝐸𝐸 be an arrival function.  Then, 𝑋𝑋, 𝜈𝜈, 𝜂𝜂 is a fluid model solution for 𝐸𝐸 if the following hold. 

(1) For each 𝑗𝑗, 𝐾𝐾𝑗𝑗 is non-decreasing and ∑𝑗𝑗=1
𝐽𝐽 𝐵𝐵𝑗𝑗 𝑡𝑡 ∈ [0,1] for all 𝑡𝑡 ≥ 0.

(2) For all 𝑗𝑗 and 𝑡𝑡 ≥ 0, 𝑋𝑋𝑗𝑗 𝑡𝑡 = 𝑋𝑋𝑗𝑗 0 + 𝐸𝐸𝑗𝑗 𝑡𝑡 − 𝑅𝑅𝑗𝑗 𝑡𝑡 − 𝐷𝐷𝑗𝑗 𝑡𝑡 , 0 ≤ 𝑄𝑄𝑗𝑗 𝑡𝑡 ≤ ∫0
∞ 𝜂𝜂𝑗𝑗(𝑑𝑑𝑑𝑑), and finiteness.

(3) For all 𝑗𝑗, 𝑓𝑓 ∈ 𝐶𝐶𝑏𝑏([0,∞)), and 𝑡𝑡 ≥ 0, 

𝑓𝑓, 𝜈𝜈𝑗𝑗(𝑡𝑡) = 𝑓𝑓 ⋅ +𝑡𝑡
�̅�𝐺𝑗𝑗𝑠𝑠 ⋅ +𝑡𝑡
�̅�𝐺𝑗𝑗𝑠𝑠 ⋅

, 𝜈𝜈𝑗𝑗(0) + �
0

𝑡𝑡
𝑓𝑓 𝑡𝑡 − 𝑢𝑢 �̅�𝐺𝑗𝑗𝑠𝑠 𝑡𝑡 − 𝑢𝑢 𝑑𝑑𝐾𝐾𝑗𝑗(𝑢𝑢)

𝑓𝑓, 𝜂𝜂𝑗𝑗(𝑡𝑡) = 𝑓𝑓 ⋅ +𝑡𝑡
�̅�𝐺𝑗𝑗𝑎𝑎 ⋅ +𝑡𝑡
�̅�𝐺𝑗𝑗𝑎𝑎 ⋅

, 𝜂𝜂𝑗𝑗(0) + �
0

𝑡𝑡
𝑓𝑓 𝑡𝑡 − 𝑢𝑢 �̅�𝐺𝑗𝑗𝑎𝑎 𝑡𝑡 − 𝑢𝑢 𝑑𝑑𝐸𝐸𝑗𝑗(𝑢𝑢) .

Service ccdf.

Abandonment ccdf.
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Non-negative, continuous, and non-decreasing J-dimensional function having domain ℜ+; for example, 𝐸𝐸𝑗𝑗 𝑡𝑡 = 𝜆𝜆𝑗𝑗𝑡𝑡 for all 𝑗𝑗.

(No service rule specified.)



Non-Policy Specific Convergence
Assume 

• lim
𝑁𝑁→∞

𝐸𝐸𝑁𝑁

𝑁𝑁
= 𝐸𝐸 almost surely, lim

𝑁𝑁→∞
𝔼𝔼

𝐸𝐸𝑗𝑗
𝑁𝑁(𝑡𝑡)

𝑁𝑁
= 𝔼𝔼[𝐸𝐸𝑗𝑗(𝑡𝑡)] , for all 𝑡𝑡 ≥ 0, and 𝐸𝐸 is continuous;

• Entry-into-service process oscillations can be controlled;
• Convergence of initial conditions and “goodness” of initial fluid state;
• Hazard rates of abandonment and service time distributions are either bounded or lower semi-continuous;

PW 2020 Theorem 1 
Suppose that (𝑋𝑋, 𝜈𝜈, 𝜂𝜂) is a distributional limit point of a sequence of 
fluid-scaled state processes.  Then, (𝑋𝑋, 𝜈𝜈, 𝜂𝜂) is almost surely a fluid model solution for 𝐸𝐸.

PW 2020 Theorem 2
A sequence of fluid-scaled state processes is tight.

15/25



Talk Outline

1. Provide a fluid model relevant for a large class of non-preemptive HL scheduling policies.
 Show limit points of scaled state processes are fluid model solutions (PW, Theorem 1).
 Establish tightness (PW, Theorem 2).

2. Formulate and solve a fluid control problem for an overloaded system.
 Characterize fluid invariant states (PW, Proposition 1).
 Provide weak convergence theorem for appropriate scheduling policy (PW, Theorem 3).
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𝐸𝐸𝑗𝑗 𝑡𝑡 = 𝜆𝜆𝑗𝑗𝑡𝑡 for 𝑡𝑡 ≥ 0 and all 𝑗𝑗 and ∑𝑗𝑗=1
𝐽𝐽 𝜆𝜆𝑗𝑗

𝜇𝜇𝑗𝑗
≥ 1.

Any questions?



Fluid Model Invariant States
Definition (Feasible server effort allocation).
• 𝑩𝑩 = 𝑏𝑏 ∈ ℜ+

𝐽𝐽 : 𝑏𝑏𝑗𝑗 ≤ 𝜆𝜆𝑗𝑗/𝜇𝜇𝑗𝑗 ,∑𝑗𝑗=1
𝐽𝐽 𝑏𝑏𝑗𝑗 ≤ 1

PW 2020 Proposition 1
For each 𝑏𝑏 ∈ 𝑩𝑩, there exists an invariant state such that 𝑏𝑏𝑗𝑗
is the proportion of server effort devoted to class 𝑗𝑗, and

𝑄𝑄𝑗𝑗 𝑡𝑡 = 𝜆𝜆𝑗𝑗
1
𝜃𝜃𝑗𝑗
𝑓𝑓𝑗𝑗

𝜆𝜆𝑗𝑗−𝑏𝑏𝑗𝑗𝜇𝜇𝑗𝑗
𝜆𝜆𝑗𝑗

for all 𝑡𝑡 ≥ 0, where 𝑓𝑓𝑗𝑗 𝑥𝑥 = 𝐺𝐺𝑒𝑒,𝑗𝑗
𝑎𝑎 𝐺𝐺𝑗𝑗𝑎𝑎

−1(𝑥𝑥) . 

Intuition:  If exponential abandonment distribution, then
𝜆𝜆𝑗𝑗
𝜃𝜃𝑗𝑗
𝑓𝑓𝑗𝑗

𝜆𝜆𝑗𝑗 − 𝑏𝑏𝑗𝑗𝜇𝜇𝑗𝑗
𝜆𝜆𝑗𝑗

=
1
𝜃𝜃𝑗𝑗

𝜆𝜆𝑗𝑗 − 𝑏𝑏𝑗𝑗𝜇𝜇𝑗𝑗 = qj.

Flow balance implies 𝜆𝜆𝑗𝑗 − 𝑏𝑏𝑗𝑗𝜇𝜇𝑗𝑗 = 𝜃𝜃𝑗𝑗𝑞𝑞𝑗𝑗.

Abandonment cdf.Abandonment stationary excess cdf.
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Mean patience time.



Fluid Model Invariant States
Definition (Feasible server effort allocation).
• 𝑩𝑩 = 𝑏𝑏 ∈ ℜ+

𝐽𝐽 : 𝑏𝑏𝑗𝑗 ≤ 𝜆𝜆𝑗𝑗/𝜇𝜇𝑗𝑗 ,∑𝑗𝑗=1
𝐽𝐽 𝑏𝑏𝑗𝑗 ≤ 1

PW 2020 Proposition 1
For each 𝑏𝑏 ∈ 𝑩𝑩, there exists an invariant state such that 𝑏𝑏𝑗𝑗
is the proportion of server effort devoted to class 𝑗𝑗, and

𝑄𝑄𝑗𝑗 𝑡𝑡 = 𝜆𝜆𝑗𝑗
1
𝜃𝜃𝑗𝑗
𝑓𝑓𝑗𝑗

𝜆𝜆𝑗𝑗−𝑏𝑏𝑗𝑗𝜇𝜇𝑗𝑗
𝜆𝜆𝑗𝑗

for all 𝑡𝑡 ≥ 0, where 𝑓𝑓𝑗𝑗 𝑥𝑥 = 𝐺𝐺𝑒𝑒,𝑗𝑗
𝑎𝑎 𝐺𝐺𝑗𝑗𝑎𝑎

−1(𝑥𝑥) . 

Abandonment cdf.Abandonment stationary excess cdf.
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Mean patience time.

How good is using the function 𝒇𝒇𝒋𝒋 to approximate the class 𝒋𝒋 mean steady-state queue-length?



Performance Measure Approximation
Assume Static Priority Scheduling.
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A two-class 𝑀𝑀/𝐿𝐿𝑁𝑁(1,4)/100 + 𝐿𝐿𝑁𝑁(1, 𝑣𝑣) queue, 
with each class having arrival rate 60 per hour.

0

5

10

15

20

25

30

35

40

45

0.2 0.5 1 2 5

Variability

Low Priority Queue Size

Predicted Approximated

(High priority queue has predicted size 0, and simulated 
size about 1.5 for all values of the variability v.)

Note that queue size decreases as variability increases.



A Fluid Control Problem

𝑚𝑚⋆ = min
𝑏𝑏∈𝐵𝐵

�
𝑗𝑗=1

𝐽𝐽
𝑐𝑐𝑗𝑗
𝜆𝜆𝑗𝑗
𝜃𝜃𝑗𝑗
𝑓𝑓𝑗𝑗

𝜆𝜆𝑗𝑗 − 𝑏𝑏𝑗𝑗𝜇𝜇𝑗𝑗
𝜆𝜆𝑗𝑗

+ 𝑎𝑎𝑗𝑗 𝜆𝜆𝑗𝑗 − 𝑏𝑏𝑗𝑗𝜇𝜇𝑗𝑗

Queue Abandonments

• If the abandonment distribution has increasing hazard rate (IFR), then
o 𝑓𝑓𝑗𝑗 is concave, and 𝑚𝑚⋆ is achieved by a feasible vertex.
o I.E., the solution motivates a static priority policy. 

• If the abandonment distribution has decreasing hazard rate (DFR), then
o 𝑓𝑓𝑗𝑗 is convex, and 𝑚𝑚⋆ could be attained by a non-vertex feasible point.
o I.E., the solution motivates partially serving classes (not static priority). 
o (We have numeric examples with non-vertex feasible point solution.)

When is the solution consistent with static priority scheduling?
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• If there is no holding cost; that is, 𝑐𝑐𝑗𝑗 = 0.
o Digression:  Return to the question from earlier in the talk regarding implications for learning.



Other Examples when Static Priority Scheduling is not Optimal:
Non-Overloaded Regimes

• Exact MDP Analysis
– Down, Koole and Lewis (2011)

• Single-Server System in Heavy-Traffic Asymptotic Regime
– Ata and Tongarlak (2013)
– Kim and Ward (2013)

• Many-Server System in Halfin-Whitt Asymptotic Regime
– Harrison and Zeevi (2004)
– Atar, Mandelbaum and Reiman (2004)
– Kim, Randhawa, and Ward (2018)

• Many-Server System in Overloaded Regime
– Long, Shimkin, Zhang, and Zhang (2020) for GI/M/N+GI

21/25
Remaining Q:  How do I schedule so as to achieve b?



Weighted Random Buffer Selection (WRBS) Scheduling

22/25

A newly available server next serves class 𝑗𝑗 with probability 𝑝𝑝𝑗𝑗 > 0, where ∑j=1
J 𝑝𝑝𝑗𝑗 = 1.



Policy Specific Convergence
Assume 

• lim
𝑁𝑁→∞

𝐸𝐸𝑁𝑁

𝑁𝑁
= 𝐸𝐸 almost surely, lim

𝑁𝑁→∞
𝔼𝔼

𝐸𝐸𝑗𝑗
𝑁𝑁(𝑡𝑡)

𝑁𝑁
= 𝔼𝔼[𝐸𝐸𝑗𝑗(𝑡𝑡)] , for all 𝑡𝑡 ≥ 0, and 𝐸𝐸 is continuous;

• Entry-into-service process oscillations can be controlled;
• Convergence and “goodness” of initial conditions;
• Hazard rates of service distributions are either bounded or lower semi-continuous;
• Hazard rates of abandonment distributions are bounded.
PW 2020 Theorem 5
Suppose that the queue operates under WRBS policy 𝑝𝑝.  Then, 

𝑿𝑿𝑵𝑵

𝑵𝑵
, 𝝂𝝂

𝑵𝑵

𝑵𝑵
, 𝜼𝜼

𝑵𝑵

𝑵𝑵
⇒ (𝑋𝑋, 𝜈𝜈, 𝜂𝜂) as 𝑁𝑁 → ∞,

where (𝑋𝑋, 𝜈𝜈, 𝜂𝜂) is almost surely a fluid model solution for 𝐸𝐸 that has unique law.
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Fluid-scaled state process

PW 2020 Theorem 4
For any non-idling 𝑏𝑏 ∈ 𝑩𝑩, the WRBS policy with 𝑝𝑝𝑗𝑗 = 𝜇𝜇𝑗𝑗𝑏𝑏𝑗𝑗

∑𝑘𝑘=1
𝐽𝐽 𝜇𝜇𝑘𝑘𝑏𝑏𝑘𝑘

has invariant state defined by 𝑏𝑏.

To minimize cost asymptotically, use 𝑏𝑏 that solves the fluid control problem.

and many idling.



General Roadmap for Proving Policy Specific Convergence:
Application of Theorems 1 and 2

PW 2020 Theorem 3 [The Key to Proving the Weak Convergence on the Previous Slide]
Given a fluid arrival function 𝐸𝐸, a fluid model solution for WRBS policy p is unique for each initial state.
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Add policy specific equations to the multiclass G/GI/N+GI queue that uniquely characterize the dynamics.
(Note:  The arrival process may have time-varying rates, as is true in many application settings.)

Add policy specific equations to the fluid model, and prove uniqueness of fluid model solutions*.

*For a given arrival function and given initial condition.

Prove that fluid limit points of fluid-scaled state processes satisfy the fluid model policy specific equations.
(Theorems 1 and 2 show that all other conditions in the definition of a fluid model solution are satisfied.)



Summary and Work-in-Progress
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Multiclass 
G/GI/N+GI 
Queue

Fluid  
Model

Fluid  
Invariant
States

G/GI/N+GI 
Queue
Steady-State

N→ ∞

N→ ∞

PW 2020, Theorems 1 and 2

Fluid Control Problem

WRBS Policy Class
PW 2020, Theorem 3

LLN Scaling

LLN Scaling

Functional Law of Large 
Numbers Approximation to 
the Stochastic System

Fixed Point Solutions

Operating under an
Unspecified Admissible 
Scheduling Policy

Q:  How to establish asymptotic optimality?

Thank you and questions.



Example with Non-Vertex Optima

(This example is developed by Amber Puha’s student Jacques Coulombe.)

Parameters:  𝜌𝜌1 = 𝜌𝜌2 = 𝜇𝜇1 = 𝜇𝜇2 = 𝑐𝑐1 = 𝑐𝑐2 = 1 and 𝑎𝑎1 = 𝑎𝑎2 = 0.

Then, 𝑏𝑏2 = 1 − 𝑏𝑏1, and we have a 1-D problem.

Patience densities:   Class 2 is exponential(𝜃𝜃2);
Class 1 has density 2𝑒𝑒

−𝑥𝑥+2𝑒𝑒−2𝑥𝑥

3
for 𝑥𝑥 > 0, which has mean 5

6
.

𝜃𝜃2 =
2

3𝑏𝑏1
1 + 3𝑏𝑏1 − 1 + 3𝑏𝑏1 .

0

0.2

0.4

0.6

0.8

1

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

The minimizer 𝑏𝑏1 ∈ [0,1] satisfies

𝜃𝜃2

𝑏𝑏1(𝜃𝜃2)

𝑚𝑚⋆ = min
𝑏𝑏∈𝑩𝑩𝐽𝐽

�
𝑗𝑗=1

𝐽𝐽
𝑐𝑐𝑗𝑗
𝜆𝜆𝑗𝑗
𝜃𝜃𝑗𝑗
𝑓𝑓𝑗𝑗 1 −

𝑏𝑏𝑗𝑗
𝜌𝜌𝑗𝑗

+ 𝑎𝑎𝑗𝑗 𝜆𝜆𝑗𝑗 − 𝑏𝑏𝑗𝑗𝜇𝜇𝑗𝑗

Queue Abandonments
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WRBS Policy-Specific Fluid Equations

A specified WRBS fluid model solution also satisfies 

𝑝𝑝𝑗𝑗 �
𝑠𝑠

𝑡𝑡
1{𝑄𝑄𝑗𝑗 𝑢𝑢 > 0}𝑑𝑑𝐷𝐷Σ(𝑢𝑢) ≤ 𝐾𝐾𝑗𝑗 𝑡𝑡 − 𝐾𝐾𝑗𝑗 𝑠𝑠 ≤ 𝑝𝑝𝑗𝑗 �

𝑠𝑠

𝑡𝑡
𝑑𝑑𝐷𝐷Σ 𝑢𝑢 , 1 ≤ 𝑗𝑗 < 𝐽𝐽

and
𝐼𝐼 𝑡𝑡 = 𝐼𝐼 𝑡𝑡 − 𝑄𝑄𝐽𝐽(𝑡𝑡) +

.
Entry into service process.
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