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Social media platforms, such as Facebook and TikTok,
have triggered debates on privacy. The recent transforma-
tion of social media into an increasingly centralized service,
exemplified by TikTok, only exacerbates the matter. While
aggregation has been deemed an effective way to combat pri-
vacy infringement, a high degree of centralization can make
aggregation ineffective.

We present a randomized push algorithm, with which a
service provider can infer individual users’ preferences from
publicly available aggregate data. Hence, even social media
platforms comply with strict privacy regulations regarding
individual user’s action, a tremendous amount of informa-
tion can still be inferred from aggregate data due to the
centralized control.

In order to infer users’ individual preferences, the social-
platform-service provider chooses a set of contents for each
topic of interest. The topic of a piece of content is known to
the service provider. Figure 1 illustrates the push algorithm
for one topic. In Fig. 1(a), each content is pushed to a
random subset of users. In Fig. 1(b), if a user is interested
in the topic, he views the pushed contents; otherwise, he
does not view them. However, the individual action of a
user viewing a particular piece of content is not recorded in
the system. Instead, only the aggregate number of views of
each content, as in Fig. 1(c), is recorded.

1. PROBLEM FORMULATION
Given a set of m articles of a given topic and a set of

n users whose preferences of the topic are denoted by pi ∈
{0, 1}, i = 1, · · · , n, each user is pushed a subset of the ar-
ticles. The aggregate views of each article, ra =

∑
i∈I(a) pi,

a = 1, · · · ,m, are collected, where I(a) is the set of users
whom article a is pushed to. The inference problem is to
find the values of pi, for all i = 1, · · · , n.

We are interested in designing a push algorithm and an
inference algorithm that achieve the following: 1) The push
algorithm only sends a small number of articles to each user.
2) The inference algorithm is of low complexity. 3) Together
the algorithms find the user preferences with as few articles
as possible.

1.1 Formulation as a Compressed Sensing Prob-
lem

The above problem can also be formulated as a class of
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(a) Each content
is pushed to a
random subset of
users.

(b) Interested
users view the
pushed contents.
This individual
action is not
recorded in the
system.

(c) Aggregated
views for each
article is recorded
and is publicly
available, but the
push-algorithm is
only known to the
service provider.

Figure 1: Overview of the push-aggregation process.

compressed sensing problem [Keiper et al. 2017], where a
signal x ∈ {0, 1}n is recovered from a underdetermined sys-
tem of linear equations

Ax = b

. Our problem has the following additional constraints moti-
vated by the application: 1) Matrix A in a compressed sens-
ing problem has real-number entries. However, for our prob-
lem the entries of A have to be in {0, 1}, denoting whether
an article is pushed to a user. 2) Matrix A in a compressed
sensing problem does not have sparsity requirement. How-
ever each user is only able to read a small number of arti-
cles, hence A has to be very sparse. 3) The reconstruction
algorithms for compressed sensing has a worst-case O(n3)
complexity. With n being large in our application, we are
interested in designing a linear-complexity inference algo-
rithm.

2. CONTRIBUTIONS
We propose the following solution that consists of two

parts:

1. A randomized push algorithm that sends only O(1)



articles to each user.

2. A message-passing reconstruction algorithm that in-
fers pi from the aggregate views ra. The complexity
of the message passing algorithm is O(n), i.e., linear
in the number of users.

The push algorithm can be formulated as a bipartite graph
between users and articles, where the article node a is con-
nected to I(a). We describe the bipartite graph by its degree
distribution:

Definition 1. Degree distribution. Given a bipartite
graph with n user nodes and m article nodes, let λk be the
fraction of edges that connect a user node with degree k, and
ρk be the fraction of edges that connect an article nodes with
degree k, then the edge-perspective degree distribution pair is

λ(x) =

lmax∑
k=1

λkx
k−1, ρ(x) =

rmax∑
k=1

ρkx
k−1

The push algorithm can be designed to minimize the num-
ber of articles needed for accurate reconstruction with prob-
ability 1. Let the proportion of users who prefer the given
topic be ε ∈ [0, 1]. Let the average number of articles per
user, β = m

n
. We study the threshold β∗ such that all for

all β > β∗, the preferences pi can be inferred correctly with
probability 1.

We obtain the following results:

Theorem 1. Optimal Ratio. The optimal article-to-
user ratio β∗ satisfies the following bounds:

β∗ ≤
√
ε(1− ε).

Theorem 2. Achievability. We can construct a sequence

of degree distribution pairs, (λ
(N)
α , ρα) with

lim
N→∞

β(N) , lim
N→∞

∫ 1

0
ρα(x)dx∫ 1

0
λ
(N)
α (x)dx

=
√
ε(1− ε)

such that in the large n limit, all user preferences can be
correctly reconstructed with probability 1.

Theorem 3. Phase Transition. In the large n limit,
there exists a threshold of the proportion of interested users
ε∗, such that:
(i) If ε ≤ ε∗, p̂i(2t) ↑ pi and p̂i(2t+ 1) ↓ pi for all i.
(ii) If ε > ε∗, there exists a positive proportion of users
such that p̂i(2t) < p̂i(2t + 1) for all t. Thus, some users’
preferences are not correctly inferred.

Note that the threshold β∗ is the exact counterpart of the
phase-transition threshold analyzed in [Keiper et al. 2017]
where the compressed sensing problem with the signal x ∈
{0, 1}n is solved with the basis pursuit algorithm. The result
in [Keiper et al. 2017] is on random Gaussian matrices and
the threshold can be numerically obtained. We plot the
compressed sensing threshold, denoted by CS, against our
threshold in Figure 2.
Comparison to Counter Braids [Lu et al. 2008]

We also compare our algorithm against that of one-layer
Counter Braids[Lu et al. 2008] (CB) in Figure 2. The CB al-
gorithm is designed for an infinite alphabet of x ∈ N whereas
our algorithm is designed for x ∈ {0, 1}. We observe that

Figure 2: The proposed algorithm achieves a phase-
transition threshold that is extremely close to that
of compressed sensing (CS) and significantly lower
than one-layer Counter Braids.

phase transition occurs much earlier with our algorithm than
with the CB algorithm.

The analysis of our reconstruction algorithm deals with
the lack of monotonicity in ε and can also be of interest
to general applications involving compressed measurement.
Note that the lack of monotonicity is not due to the symme-
try with respect to ε = 0.5, but is inherent in the message
passing algorithm even if we restrict to ε < 0.5.

In particular, given a fixed pair of push and reconstruc-
tion algorithms, the density evolution equation of both the
erasure-decoding algorithm [Richardson and Urbanke 2008]
and Counter Braids [Lu et al. 2008], has the following prop-
erty: for any ε1 < ε2, the corresponding error probabilities
at the t-th iteration always satisfy P t1 < P t2 , i.e., the mono-
tonicity of error probability is kept at each iteration.

With our algorithm, however, given ε1 < ε2 < 0.5, the
monotonicity of P t1 < P t2 does not hold due to the asymme-
try inherent in the message passing algorithm. It is hence
surprising that phase transition occurs with the degree dis-
tribution achieving β =

√
ε(1− ε) , despite the lack of

monotonicity.
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