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ABSTRACT
The consensus achieved in the consensus-forming algorithm
is not generally a constant but rather a random variable,
even if the initial opinions are the same. In the present pa-
per, we investigate the statistical properties of the consensus
in a broadcasting-based consensus-forming algorithm. We
focus on two extreme cases: consensus forming by two agents
and consensus forming by an infinite number of agents. In
the two-agent case, we derive several properties of the dis-
tribution function of the consensus. In the infinite-number-
of-agents case, we show that if the initial opinions follow a
stable distribution, then the consensus also follows a stable
distribution. In addition, we derive a closed-form expression
of the probability density function of the consensus when the
initial opinions follow a Gaussian distribution, a Cauchy dis-
tribution, or a Lévy distribution.

CCS Concepts
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Keywords
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1. INTRODUCTION
Consensus forming is a problem in which agents initially

having different opinions mutually exchange and thereby up-
date their opinions by a distributed algorithm to achieve a
consensus [3]. Such problems have many applications, in-
cluding distributed optimization, resource allocation in com-
puter networks, distributed data fusion or clock synchroniza-
tion in sensor networks, coordinate control of mobile agents,
and opinion forming on social networks [2, 4, 1, 7, 6].

In the present paper, we consider the broadcasting-based
consensus-forming algorithm. In this algorithm, one agent
is chosen randomly with a given probability to broadcast
its opinion to neighbor agents. Agents receiving an opinion
from their common neighbor compute the weighted average
of their opinions and the received opinion. The broadcasting-
based algorithm has recently been investigated in several
studies [2, 4, 7, 6] because the algorithm naturally arises in
wireless networks, due to the broadcast nature of wireless
communication [7]. The broadcasting-based algorithm also

IFIP WG 7.3 Performance 2020, November 02–06, 2020, Milano, Italy
Copyright is held by author/owner(s).

has high affinity to social networks because, for example,
Twitter users very frequently broadcast a received tweet to
all followers, which is usually referred to as retweeting.

Note that the consensus achieved in the randomized con-
sensus forming algorithm, including the broadcasting-based
consensus-forming algorithm, is not generally a constant,
but rather a random variable. The achieved consensus de-
pends on the order in which the agents broadcasts their
opinions and it largely varies even if the initial opinions of
agents are the same. However, little is known about the
statistical properties of the achieved consensus.

In the present paper, we investigate the statistical prop-
erties of the consensus in the broadcasting-based consensus
forming algorithm. We first derive fundamental equations
concerning the consensus achieved in the algorithm. Based
on the derived equations, we study the consensus for two ex-
treme cases: consensus forming by two agents and consensus
forming by an infinite number of agents. In the two-agent
case, we obtain several results on the distribution function
of the consensus. In the infinite-number-of-agents case, we
show that if the initial opinions follow a stable distribution,
the consensus also follows a stable distribution. We also
derive a closed-form expression of the probability density
function (PDF) of the consensus when the initial opinions
follow a Gaussian distribution, a Cauchy distribution, or a
Lévy distribution.

The remainder of the present paper is organized as fol-
lows. In Section 2, we present the problem formulation. In
Section 3, we show some preliminary results for the conver-
gence of the consensus. Then, in Section 4, we derive fun-
damental equations for the consensus. In Sections 5 and 6,
we respectively show the results for the two-agent case and
the infinite-number-of-agents case. Finally, in Section 7, we
briefly conclude the paper.

2. PROBLEM FORMULATION
We consider N agents interacting over a directed graph.

The agents are numbered from 1 to N , and the adjacency
matrix of the directed graph connecting the agents is de-
noted by A = {aij}. If a directed link from agent i ∈
N def

= {1, . . . , N} to agent j ∈ N exists, aij = 1; otherwise,
aij = 0. The agents have their own opinions, and the opinion
of each agent is expressed as a real number. Let xi(n) ∈ R
denote the opinion of agent i at time n ∈ N def

= {0, 1, 2, . . . }.
The agents broadcast their opinions to each other as well as
update their opinions at discrete time n ∈ N in the following
manner. At each discrete time, one of the agents broadcasts



its opinion to its neighbors. The probability that agent i
broadcasts its opinion at each discrete time is denoted by
pi. We assume that pi > 0 for all i ∈ N and

∑N
i=1 pi = 1.

At each discrete time n, agent i updates its opinion by the
following equation:

xi(n+ 1) = xi(n) +

N∑
j=1

δj,enajiwji(xj(n)− xi(n)), (1)

where en ∈ N denotes the agent broadcasting its opinion at
time n, and

δj,k =

{
1, j = k

0. otherwise

Note that wji is a parameter indicating the degree to which
agent j influences the opinion of agent i. We assume that
0 ≤ wij ≤ 1 for all i− j pairs. We also assume that {en}∞n=0

are statistically independent random variables. Equation
(1) can be expressed in matrix form as follows:

x(n+ 1)⊤ = Q(en)x(n)⊤,

x(n)
def
= (x0(n), . . . , xN−1(n)).

where Q(k) is a matrix expressing the opinion updates when
agent k is broadcasting its opinion, and ij element of Q(k),

q
(k)
ij , is given as

q
(k)
ij =


1− wkiaki, i = j

wkiaki, i ̸= j, j = k

0. otherwise

Note that Q(k) is a stochastic matrix. The sum of the ele-
ments of each row vector of Q(k) is equal to 1. Define

Q
def
=

N∑
k=1

pkQ
(k).

Here, Q is also a stochastic matrix. In the present paper, we
assume that Q is irreducible and aperiodic, and without loss
of generality, its elements are all positive1. We also assume
that xi(0) < ∞ for all i ∈ N .

3. REACHING THE CONSENSUS
The broadcasting-based consensus-forming algorithm in-

cluding the model described in Section 2 has been investi-
gated in several papers [2, 4, 7, 6], and it has been proved
that the opinions of the agents almost surely converge to a
consensus. For the completeness of the present paper, in this
section, we briefly show that the convergence of the opinions
to a consensus is attained almost surely based on the model
in Section 2. For this purpose, we define

M(n)
def
= max

i∈N
xi(n), m(n)

def
= min

i∈N
xi(n),

and give two lemmas without proof.

Lemma 1. M(n + 1) − m(n + 1) ≤ M(n) − m(n) holds
sample-path wise.

1Because of the irreducibility, there exists n ∈ N such that
the elements of Qn are all positive, even if Q has a non-
positive element. Thus, all results of the present paper hold
by using Qn instead of Q, even if Q has non-positive ele-
ments.

Lemma 2.

lim
n→∞

E[M(n)−m(n)] = 0.

The two lemmas readily yield the almost sure convergence
to a consensus, as shown in the next theorem.

Theorem 1. The opinions of the agents converge to a
consensus almost surely, i.e.,

lim
n→∞

(M(n)−m(n)) = 0, w.p.1.

Proof. Lemma 1 means that M(n)−m(n) is decreasing
sample-path-wise. Thus, it follows from Lemma 2 and the
monotone convergence theorem that

0 = lim
n→∞

E[M(n)−m(n)] = E[ lim
n→∞

(M(n)−m(n))].

Since M(n)−m(n) ≥ 0, it follows that

lim
n→∞

(M(n)−m(n)) = 0, w.p.1.

Let π be the left eigenvector of Q associated with eigen-
value 1. Assume that π is normalized such that the sum of
elements is equal to 1, i.e.,

∑N
i=1 πi = 1. Letting X(n)

def
=

πx(n)T yields

E[X(n)|X(m)] = E[πQn−mx(m)T|X(m)]

= E[πx(m)|X(m)] = X(m) for m ≤ n.

This means that X(n) is a martingale. It follows from the
martingale convergence theorem that X(n) converges to a
random variable X∞ as n → ∞ because X(n) ≤ M(0) < ∞
for all n ∈ N. Since the opinions converge to a consensus
(i.e., x1(∞) = · · · = xN (∞)) with probability one, X∞ is
equal to the consensus.

4. FUNDAMENTAL EQUATIONS ON THE
CONSENSUS

As shown in Section 3, the opinions of the agents converge
to a consensus with probability one, and the consensus X∞
is a random variable. In this section, we derive two funda-
mental equations to investigate the statistical properties of
X∞ under the assumption that

∀i, j (i ̸= j), wij = w, aij = 1.

Note that w > 0 due to the assumption of the irreducibility
of Q. In the following, the initial opinions (opinions at time
0) of agents, x(0), are simply denoted as x, and the consen-
sus achieved starting from the initial opinions x is denoted
by X∞(x). Let X be a discrete random variable having the
following distribution:

P (X = xi) = pi, i = 1, . . . , N,

where xi is the initial opinion of agent i.

Theorem 2.

X∞(x)
d
= (1− w)X∞(x) + wX, (2)

where
d
= indicates equality in distribution. The first and

second terms of the right-hand side of (2) are statistically
independent.



Proof. Consensus X∞(x) can be expressed as

X∞(x) = π

(
∞∏

n=0

Q(en)

)
xT,

∞∏
n=0

Q(en) def
= lim

m→∞
Q(em) . . . Q(e1)Q(e0).

Observe that

Q(e0)xT = (1− w)xT + wxe01
T, (3)

and (
∞∏

n=1

Q(en)

)
1T = 1T, (4)

where 1 is the row vector having all elements equal to 1. It
follows from (3) and (4) that

X∞(x) = (1− w)π

(
∞∏

n=1

Q(en)

)
xT + wxe0 . (5)

Here, π
(∏∞

n=1 Q
(en)

)
xT is the consensus reached when the

opinions at time 1 are equal to x, which is equal to X∞(x)
in distribution, while xe0 is equal to X in distribution. Note
that the first term on the right-hand side of (5) depends on
(e1, e2, . . . ), and the second term on the right-hand side of
(5) depends only on e0. Thus, the first and second terms
are statistically independent. These observations complete
the proof.

Theorem 3.

X∞(x)
d
= w

∞∑
k=0

(1− w)kXk, (6)

where X0, X1, . . . are independent random variables and are
identically distributed with X.

Proof. By substituting X into X0 and (1−w)X∞(x)+
wX1 into X∞(x) in the right-hand-side of (2), we obtain

X∞(x)
d
= (1− w)2X∞(x) + w(1− w)X1 + wX0.

By substituting (1 − w)X∞(x) + wX2 into X∞(x) in the
right-hand-side of (2), we obtain

X∞(x)
d
= (1−w)3X∞(x)+w(1−w)2X2+w(1−w)X1+wX0.

Repeating the procedure mentioned above yields (6).

5. CONSENSUS BY TWO AGENTS

5.1 Expectation and Variance
We first focus on the simplest case, in which opinions are

exchanged by two agents (N = 2). Without loss of general-
ity, we assume that x = (0, 1) and Xk : Ω → {0, 1}, k ∈ N
are random variables on probability space (Ω,F , P ). It
readily follows from (6) that

E[X∞] = w

∞∑
k=0

(1− w)kE[Xk] = E[X],

V ar[X∞] = w2
∞∑

k=0

(1− w)2kV ar[Xk] =
wV ar[X]

2− w
.

In other words, the expectation of the consensus does not
depend on w, and the variance is an increasing function of
w. In the remainder of the present paper, for simplicity, we
assume that P (Xk = 0) = P (Xk = 1) = 0.5.

5.2 Distribution Function
In this subsection, we investigate the distribution of X∞.

For this purpose, we define the mapping fw : [0, 1) → [0, 1)

y =

∞∑
k=1

ϵk(y)

2k
−→ fw(y) = w

∞∑
k=1

(1− w)k−1ϵk(y)

Here, ϵk(y) ∈ {0, 1} is the digit associated with the term
2−k in the binary representation of y. In order to make the
binary representation unique, we do not allow an infinite
string of 1’s in the binary representation. For example, 0.5
has two binary representations:

0.5 =
1

2
, 0.5 =

∞∑
k=2

1

2k
,

and we allow only the first representation. We define

Λ
def
= {yn,k : n = 1, 2, . . . , k = 0, 1, . . . , 2n−1 − 1},

yn,k
def
=

2k + 1

2n
.

Note that fw is the inverse of the generalized Cantor func-
tion when w > 0.5. We show some properties of fw as
lemmas.

Lemma 3. When w ̸= 0.5, fw(y) is discontinuous at y ∈
Λ and continuous on [0, 1) \ Λ. When w = 0.5, fw(y) = y,
and thus fw(y) is continuous on [0, 1).

Proof. It is easily seen that fw(y) = y when w = 0.5.
Now, assume that w ̸= 0.5. By expressing k ∈ {0, 1, . . . , 2n−1−
1} in a binary representation such that k =

∑n−2
l=0 ξl(k)2

l,
where ξl(k) ∈ {0, 1}, we have

yn,k =

n−2∑
l=0

ξl(k)2
l+1

2n
+

1

2n
=

n−1∑
i=1

ξn−i(k)

2i
+

1

2n
.

Let yn,k− be another (not allowed) binary representation of
yn,k.

yn,k−
def
=

n−1∑
i=1

ξn−i(k)

2i
+

∞∑
i=n+1

1

2i
.

Observe that

fw(yn,k) = w

n−1∑
i=1

(1− w)i−1ξn−i(k) + w(1− w)n−1,

fw(yn,k−) = lim
δ↓0

fw(yn,k − δ)

= w

n−1∑
i=1

(1− w)i−1ξn−i(k) + w

∞∑
i=n+1

(1− w)i−1

= w

n−1∑
i=1

(1− w)i−1ξn−i(k) + (1− w)n.

and thus

fw(yn,k)− fw(yn,k−) = (1− w)n−1(2w − 1) ̸= 0. (7)

Since yn,k = yn,k−, fw(y) is discontinuous at yn,k.
Next, we assume that y /∈ Λ. For all y /∈ Λ, there exists

integer n satisfying the following two conditions:



1. ϵn(y) = 0,

2. there is an integer m > n satisfying ϵm(y) = 1.

For n satisfying the above two conditions, we define

yn↑(y)
def
=

n∑
k=1

ϵk(y)

2k
=

n−1∑
k=1

ϵk(y)

2k
,

yn↓(y)
def
=

n∑
k=1

ϵk(y)

2k
+

1

2n
=

n−1∑
k=1

ϵk(y)

2k
+

1

2n

= yn↑ + 2−n,

yn↓(y)−
def
=

n−1∑
k=1

ϵk(y)

2k
+

∞∑
k=n+1

1

2k
.

We see that y ∈ (yn↑(y), yn↓(y)) because of the conditions
on n. We also see that

fw(yn↑) = w

n−1∑
k=1

(1− w)k−1ϵk(y)

< fw(y) < fw(yn↓−)

=

n−1∑
k=1

(1− w)k−1ϵk(y) + w

∞∑
k=n+1

(1− w)k−1

= fw(yn↑) + (1− w)n.

For any δ > 0, we can choose n > 0 such that (1−w)n < δ,
and the two conditions are satisfied. By choosing such n,

z ∈ (yn↑(y), yn↓(y)) ⇒ |fw(z)− fw(y)| < (1− w)n < δ,

which means that fw(y) is continuous on [0, 1) \ Λ.

Remark 1. When w < 0.5, fw(yn,k)−fw(yn,k−) < 0. In
other words, fw(y) jumps downward at discontinuous points.
When w > 0.5, fw(y) jumps upward at discontinuous points.

Lemma 4. fw(y) is strictly increasing if w ≥ 0.5.

Proof. It suffices to prove that fw(y1) < fw(y2) for y1 <
y2. If y1 < y2, then there exists n ∈ N such that

1. ϵk(y1) = ϵk(y2) for k = 1, 2, · · · , n− 1, and

2. ϵn(y1) = 0, ϵn(y2) = 1

Therefore,

fw(y1) = w

n−1∑
k=1

(1− w)k−1ϵk(y1) + w

∞∑
k=n+1

(1− w)k−1ϵk(y1)

< w

n−1∑
k=1

(1− w)k−1ϵk(y1) + w

∞∑
k=n+1

(1− w)k−1

= w

n−1∑
k=1

(1− w)k−1ϵk(y1) + (1− w)n

≤ w

n−1∑
k=1

(1− w)k−1ϵk(y1) + w(1− w)n−1

= w

n∑
k=1

(1− w)k−1ϵk(y2) ≤ fw(y2).

where the second line follows from the fact that there exists
k > n such that ϵk(y1) = 0, and the fourth line follows from
the fact that 1− w ≤ w for w ≥ 0.5.
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Figure 1: Distribution function of X∞

In the next theorem, we define that f−1
w ([0, x]) = ∅ for

x < 0 and f−1
w ([0, x]) = [0, 1) for x ≥ 1.

Theorem 4.

P (X∞ ≤ x) = µl

(
f−1
w ([0, x])

)
, (8)

where µl denotes the Lebesgue measure.

Proof. We define random variable Y on (Ω,F , P ) by

Y (ω) =

∞∑
k=0

Xk(ω)

2k+1
. (9)

Note that Y is uniformly distributed from 0 to 1, and thus
P (Y ∈ A) = µl(A) for A ⊂ [0, 1). We also note that the
outcome of Y is given once, the outcome of {Xk}∞k=0 is deter-
mined through (9), and thus X∞ is also determined by (6).
This relationship between Y and X∞ can be represented by
fw(Y ) = X∞. Thus, (8) follows from {X∞ ≤ x} = {Y ∈
f−1
w ([0, x])}.

We can obtain several results on the distribution of X∞,
as shown in the next theorem. We omit the proof of the
theorem because of the space limitation.

Theorem 5. If w ≤ 0.5, then X∞(Ω) = [0, 1) and any
z ∈ [0, 1) could be an outcome of X∞. If w > 0.5, then
µl (X∞(Ω)) = 0 and the Lebesgue measure of the set of the
possible outcomes of X∞ is zero. In addition, the distribu-
tion of X∞ is singular if w > 0.5.

When w = 0.5, X∞ is uniformly distributed on [0, 1].
When w = 2/3, X∞ follows Cantor distribution and the
outcomes of X∞ includes in Cantor set.

The distribution function of X∞ can be approximately
computed for any value of w with its error bound although
the algorithm for the numerical computation is omitted be-
cause of the space limitation. Figure 1 shows the distri-
bution of X∞ for four different values of w (0.2, 0.4, 0.6,
and 0.8) using the algorithm in the Appendix, where we set
n = 24. As shown in the figure, the distribution function
largely depends on w.

6. CONSENSUS BY AN INFINITE NUMBER
OF AGENTS

The results obtained thus far are derived based on the
model described in Section 2, where the number of agents is
finite andX is a discrete random variable. In this section, we
consider the cases in whichX is now continuous with respect



to the agents, which correspond to the limit cases where the
number of agents tends toward infinity. In order to show
the results, we introduce the notion of a stable distribution
[5].

Definition 1 ([5]). Two random variables Z1 and Z2

are said to be of the same type if there exist constants a > 0

and b ∈ R with Z2
d
= aZ1 + b.

Definition 2 ([5]). A random variable Z is stable if,
for any positive constants a and b, aZ1 + bZ2 has the same
type as Z where Z1 and Z2 are independent copies of Z.

Theorem 6. If X is stable, X∞ is of the same type as
X.

Proof. If X is stable, X̃n
def
= w

∑n
k=0(1−w)kXk is of the

same type as X. Since X̃n converges to X∞ in distribution
as n → ∞, X∞ is also of the same type as X.

In the remainder of this section, we consider the distribution
of the consensus X∞ in the cases in which X (initial opin-
ions of agents) follows a Gaussian distribution, a Cauchy
distribution, or a Lévy distribution because, among stable
distributions, these distributions have closed-form expres-
sions.

6.1 Initial opinions follow a Gaussian distri-
bution

Assuming that X follows a Gaussian distribution with av-
erage µ and variance σ2, Theorem 6 readily yields that X∞
also follows a Gaussian distribution. Let µ∞ and σ2

∞ be
the average and variance, respectively, of X∞. In order to
calculate µ∞ and σ2

∞, observe that w(1 − w)kX is a ran-
dom variable following a Gaussian distribution with average
w(1 − w)kµ and variance w2(1 − w)2kσ2. Thus, it follows
from (6) that

µ∞ = µ

∞∑
k=0

w(1− w)k = µ,

σ2
∞ = σ2

∞∑
k=1

w2(1− w)2k =
wσ2

2− w
,

(10)

indicating that the average does not depend on w and the
variance increases as w increases. In particular, when w = 1,
the initial opinion and the consensus are identically dis-
tributed, and, in the limit of w → 0, the consensus converges
to a constant µ. This means that the variance of the con-
sensus becomes smaller as the influence by the opinions of
neighbors becomes smaller when the initial opinions follow
a Gaussian distribution.

Figure 2 shows the results of simulation when the opinions
of agents follow a Gaussian distribution with an average of
zero and a variance of one. In the simulation, parameter w
was set at 0.2, and N (number of agents) was set at three
different values, 2, 10, or 100. At the beginning of the sim-
ulation, the opinion of each agent was independently given
according to a Gaussian distribution, and the opinion ex-
change was conducted according to the procedure explained
in Section 2 until the opinions of the agents converged to
a consensus. This simulation was repeated 107 times by
changing the initial opinions to obtain different consensus
values and their distribution was computed. The simulation
results were compared with the theoretical results, which is
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Figure 2: PDF of the consensus when the initial
opinions follow a Gaussian distribution

a Gaussian distribution with the average and variance given
by (10). In the figure, blue (N = 2), green (N = 10), and
red (N = 100) dots denote the PDF of the consensus ob-
tained by simulation, the red curve shows the PDF of the
consensus by theory, and the blue curve shows the PDF of
the initial opinion. As N becomes larger, the simulation re-
sults are more consistent with the theoretical results. When
N = 100, the simulation results are almost identical to the
theoretical results．

6.2 Initial opinions follow a Cauchy distribu-
tion

Next, we consider the case in which X follows a Cauchy
distribution with location parameter δ and scale parameter
γ: the PDF of a Cauchy distribution is given as

fX(x)
def
=

1

π

γ

γ2 + (x− µ)2
, −∞ < x < ∞.

Theorem 6 yields that X∞ also follows a Cauchy distribu-
tion. Let δ∞ and γ∞ be the location and scale parameter of
X∞. Note that w(1 − w)kX follows a Cauchy distribution
with location parameter w(1 − w)kδ and scale parameter
w(1 − w)kγ, and that if Z = X + Y , where X and Y are
mutually independent random variables following a Cauchy
distribution, then the location parameter of Z is given by
the sum of location parameters of X and Y and the scale
parameter of Z is given by the sum of scale parameters of
X and Y . Thus, it follows from (6) that

δ∞ = δ

∞∑
k=0

w(1− w)k = δ, γ∞ = γ

∞∑
k=1

w(1− w)k = γ.

That is, the consensus is identically distributed with the
initial opinion regardless of the values of w.

Figure 3 shows the results of simulation when the opinion
of the agents follows a Cauchy distribution with a location
parameter of zero and a scale parameter of one. As with
the simulation of Gaussian, parameter w was set at 0.2 and
N was set at 2, 10, or 100. In the figure, the blue (N =
2), green (N = 10), and red (N = 100) dots denote the
PDF of the consensus obtained by simulation, and the red
curve shows the PDF of the consensus by theory (the initial
opinion has the same PDF as the consensus in theory). The
simulation results are well consistent with the theoretical
results, regardless of N .

6.3 Initial opinions follow a Lévy distribution
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Figure 3: PDF of the consensus when the initial
opinions follow a Cauchy distribution

Finally, we consider the case in which X follows a Lévy
distribution with location parameter δ and scale parameter
γ: the PDF of the Lévy distribution is given as

fX(x)
def
=

√
γ

2π

1

(x− µ)3/2
e
− γ

2(x−µ) , µ < x < ∞.

From Theorem 6, X∞ follows a Lévy distribution. Note
that w(1 − w)kX follows a Lévy distribution with location
parameter w(1−w)kδ and scale parameter w(1−w)kγ, and
that if Z = X + Y , where X and Y are mutually indepen-
dent random variables following a Lévy distribution, then
the location parameter of Z is given by the sum of location
parameters of X and Y and the square root of the scale pa-
rameter of Z is given by the sum of the square roots of the
scale parameters of X and Y . Thus, it follows from (6) that

δ∞ = δ

∞∑
k=0

w(1− w)k = δ,

γ∞ = γ

(
∞∑

k=0

√
w(1− w)k

)2

=
γw

2− w − 2
√
1− w

.

In particular,

lim
w→0

γ∞ = lim
w→0

γw

2− w − 2
√
1− w

= lim
w→0

γw
w2

4
+ o(w3)

= ∞,

lim
w→1

γ∞ = lim
w→0

γw

2− w − 2
√
1− w

= γ.

In other words, when w = 1, the consensus is identically
distributed with the initial opinions, and the scale parameter
of the consensus increases as w decreases. In the limit of
w → 0, the scale parameter of the consensus tends toward
infinity. This behavior is in sharp contrast to the case in
which the distribution of the initial opinions is Gaussian.

Figure 4 shows the results of simulation when the opin-
ions of the agents follow a Lévy distribution with a location
parameter of one and a scale parameter of one. Parameter
w was set at 0.2 and N was set at 2, 10, or 100. As N
becomes larger, the simulation results are more consistent
with the theory. When N = 100, the simulation results are
almost identical to the theoretical results．

7. CONCLUDING REMARKS
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Figure 4: PDF of the consensus when the initial
opinions follow a Lévy distribution

In the present paper, we investigated the statistical prop-
erties of the consensus in the broadcasting-based consensus-
forming algorithm. The assumption P (Xk = 0) = P (Xk =
1) = 0.5 made in the two-agent case could be relaxed by
considering a de Rham distribution instead of the Lebesgue
measure in Theorem 8. We also note that the two-agent
case could be extended to multi-agent cases by imposing
some assumption on the initial opinions, e.g., xi(0) = i for
i ∈ N . These possible extensions remain for future study.
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