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ABSTRACT
Causal profiling is a novel and powerful profiling technique
that quantifies the potential impact of optimizing a code seg-
ment on the program runtime. A key application of causal
profiling is to analyze what-if scenarios which typically re-
quire a large number of experiments. Besides, the execution
of a program highly depends on the underlying machine re-
sources, e.g., CPU, network, storage, so profiling results on
one device does not translate directly to another. This is a
major bottleneck in our ability to perform scalable perfor-
mance analysis and greatly limits cross-platform software
development.
In this paper, we address the above challenges by leverag-

ing a unique property of causal profiling: only relative per-
formance of different resources affects the result of causal
profiling, not their absolute performance. We first analyt-
ically model and prove causal profiling, the missing piece
in the seminal paper. Then, we assert the necessary condi-
tion to achieve virtual causal profiling on a secondary device.
Building upon the theory, we design VCoz, a virtual causal
profiler that enables profiling applications on target devices
using measurements on the host device. We implement a
prototype of VCoz by tuning multiple hardware components
to preserve the relative execution speeds of code segments.
Our experiments on benchmarks that stress different system
resources demonstrate that VCoz can generate causal pro-
filing reports of Nexus 6P (an ARM-based device) on a host
MacBook (x86 architecture) with less than 16% variance.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Causal profiling, performance analysis, virtual infrastruc-
ture, mobile devices, ARM and x86 architectures

1. INTRODUCTION
Profiling tools are fundamental to the system design and

implementation process. They serve several functions such
as pinpointing bottlenecks, guiding optimizations, and prun-
ing design space in the overall goal to improve system per-
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formance. Causal profiling is one such powerful profiling
technique [18]. The key idea behind causal profiling is to
measure the effect of speeding up a selected line (e.g., func-
tion call) at runtime by slowing down all other concurrent
functions. It indicates where the programmer should focus
their optimization efforts and quantifies the potential impact
of optimizations, enabling a wide range of what-if analysis.
Causal profiling has been successful in analyzing the perfor-
mance bottlenecks in large complex software systems such
as the Chrome browser [22] and SQLite [18].
However, profiling can also be time-consuming and pose

limits on cross-platform application optimization. Perfor-
mance analysis on a diverse set of systems and configura-
tions requires access to a broad range of devices. Such a
setup is challenging to achieve in an academic research lab
which restricts researchers to scope their profiling to a small
number of systems.
This problem seems to be fundamental. That is, it seems

like the only way to increase the coverage is to purchase
and use a larger number of devices. Using Virtual Machines
(VMs) in public cloud infrastructures, such as Amazon Elas-
tic Compute Cloud (EC2) does not seem to be a feasible so-
lution as the hardware specification of a VM can be different
from that of the actual device, such as smartphones, tablets,
desktops, laptops, and Chromebooks. This dissimilarity can
affect the result of profiling to an extent where the conclu-
sions cannot be relied upon. Cycle-accurate simulators and
full-system emulators such as gem5 [16], QEMU [15], and
Android Studio emulator [2] provide more accurate timing
and performance characterization of applications. Although
promising, instruction set simulators are prohibitively slow
for full software stack performance analysis [25, 19, 26] and
infeasible for what-if analyses under different scenarios that
require a large number of experiments [18, 22]. Besides, con-
ventional profiling tools typically do not work on top of such
simulators [26].
In this paper, we argue that while this problem is fun-

damental in the general case, we show that causal profiling
provides a unique opportunity to address this using virtual
performance analysis. More specifically, we make a funda-
mental observation: the result of causal profiling only de-
pends on the relative execution speed of the application code
segments. Indeed, this relativity is at the core of causal pro-
filing as it measures the potential speedup contributed by a
program segment by slowing down all other code segments.
Therefore, we can emulate the hardware configuration of,
say, an ARM smartphone on an x86 laptop for causal pro-
filing by controlling the relative performance of various re-



sources such as CPU, network, and storage.
To this end, this paper makes the following contributions.

1. We present an analytical model and proof of concept
for causal profiling, a notable missing piece in the orig-
inal paper. Then, we prove a necessary condition for
virtual causal profiling on a secondary device.

2. Building on the above theory, we design VCoz, an in-
frastructure for virtual causal profiling that measures
the impact of program speedups on various devices
through hardware tunning of the host system. We
implement a prototype of VCoz and port the causal
profiler (originally designed for x86 architectures) to
mobile devices (based on ARM) to validate our theory
and prototype.

3. We test VCoz’s cross-platform application optimiza-
tion capabilities on multiple benchmarks with differ-
ent workloads with MacBook Air as the host device
and Nexus 6P as the target device. The experiments
demonstrate that VCoz can predict the result of causal
profiling with less than 16% variance while the original
Coz profiler [6] misses the optimization opportunities.

2. CAUSAL PROFILING

A

B

thread 1

thread 2

time

C

107 13O
rig

in
al

 p
ro

gr
am

Ac
tu

al
 sp

ee
du

p
Vi

rt
ua

l s
pe

ed
up

original time

speeding up A by 20% 
speeding up of A 

A

B

thread 1

thread 2

time

C

87 1311

speedup

A

B

thread 1

thread 2

time

C2

9 10 13 15

speedup

A

B

thread 1

thread 2

time

C

75 1310

new time

speedup

original time  + 
all inserted delay

A

B

thread 1

thread 2

time

C5

1210 15 18

speedup

speeding up A by 50%

function speeduppr
og

ra
m

 sp
ee

du
p

30%

Actual
Coz

Figure 1: Illustration of the concept of virtual speedup and
causal profiling. The top timeline shows the execution of
the original program with 2 threads running functions A,
B, and C and the what-if graph for function A. The middle
two timelines correspond to actually speeding up function A
by 20% and 50%, and the bottom timelines show the effect
of virtually speeding up function A by 20% and 50%.

Causal profiling [18] is a novel method for finding per-
formance bottlenecks and determining the impact of opti-
mizations on a program. The Coz profiler [6] is the original
implementation of the causal profiler. It is based on the idea
of virtual speedup to find the impact of an optimization in a
line of code (e.g., function call) on the total execution time
of the program. Figure 1 illustrates the concept of virtual
speedup with a concrete example. The top timeline shows
the execution of the original program with two threads run-
ning functions A, B, and C and the dependency between
them. The middle timeline demonstrates the effect of accel-
erating function A on the total execution time. The range

indicated by speedup shows the actual speedup of the pro-
gram after accelerating function A by 20% (left) and 50%
(right). The bottom timeline presents the effect of virtually
speeding up A. Whenever A is executing, all other concur-
rent threads are paused for a certain amount of time depend-
ing on how much one intends to accelerate A. For the left
timeline, it is 20% of the function A, and for the right, it is
50% of A. The difference between the execution time of the
program after virtual speedup and the original time of the
program with all inserted delays (indicated by speedup) re-
sults in the same speedup as actually optimizing A (middle
timeline). In general, Coz can generate a what-if graph for
function A by varying the amount of virtual speedup in A
and plotting the corresponding program speedup as shown
in the top right corner of the figure.

3. VIRTUAL COZ
Even though Coz works in practice and the concept of

causal profiling is comprehensible by examples, the authors
do not provide a proof of their method in the original paper
[18]. Therefore, in this section, we first prove the concept
of virtual speedup and causal profiling with a mathemati-
cal paradigm. Then, we extract the critical condition for
soundness of causal profiling which is the retention of the
relative speed of code segments. Following that, we describe
our methodology to translate this theory to practice.

3.1 Theory and Mathematical Formulation
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Figure 2: An example timeline for a program running on 3
threads. Edges show dependency between code segments in
the program.

Suppose we have a program that runs on N threads. We
can then divide the program into smaller code segments such
that each segment (e.g., a function or basic block) runs en-
tirely on only one thread. However, there might be depen-
dencies between code segments, creating a critical path that
determines the execution time of the program. Figure 2
illustrates an example program with 3 threads and 9 seg-
ments and the dependencies between them. Generally, for
any code segment, s, we define S(s) and F (s) as the start
and end times of s, E(s) = F (s)−S(s) is the execution time
of s, and D(s) is the set of segments that s depends on. For
any s, F (s) = E(s)+max(F (D(s)). Therefore, the total ex-
ecution time, T is given by, T = E(b5) +max(F (b4), F (c2))
for the program in Figure 2. Without loss of generality, we
present the proof for the program in the figure for read-
ability. However, it applies to any program with multiple
threads and arbitrary dependencies between code segments.
Recursively expanding the above equation and assuming

the initial segment starts at time 0 (S(b1) = 0), we have,



T = E(b5) + max


E(b1) + E(a1) + E(a2) + E(c2)

E(b1) + E(a1) + E(b4)
E(b1) + E(b2) + E(b3) + E(b4)
E(b1) + E(b2) + E(c1) + E(c2)

 (1)

Now, let us speed up an arbitrary segment s by ε seconds.
The new execution time, Tnew, can be calculated from the
above equation by updating E(s) (i.e., subtract ε). We state
that Tnew is equal to Tvirtual − ε where Tvirtual is defined
as the total time derived by adding ε to all the segments in
Equation 1 that a cutset (red line in Figure 2) passes through
except the selected segment for speedup. In our example,
if we desire to speedup segment a2, we add ε to E(b4) and
E(c1) but keep E(a2) unchanged to calculate Tvirtual.

Tvirtual = E(b5) + max


E(b1) + E(a1) + E(a2) + E(c2)
E(b1) + E(a1) + E(b4) + ε

E(b1) + E(b2) + E(b3) + E(b4) + ε
E(b1) + E(b2) + E(c1) + ε+ E(c2)



= E(b5) + max


E(b1) + E(a1) + E(a2)− ε+ E(c2)

E(b1) + E(a1) + E(b4)
E(b1) + E(b2) + E(b3) + E(b4)
E(b1) + E(b2) + E(c1) + E(c2)

+ ε

= Tnew + ε (2)

Using 2, program speedup, S, relates to Tvirtual by,

S =
T − Tnew

T
=
T − (Tvirtual − ε)

T
=

(T + ε)− Tvirtual

T
(3)

Figure 2 illustrates the above mathematical formulation
of speedup that underlines causal profiling [18]. Given this
definition of speedup, the theorem that lays the foundation
for the proposed virtual infrastructure is as follows.

Theorem. If the execution time of all the segments is scaled
by a constant factor α (i.e., E(s∗) = αE(s)) and the speedup
in a selected segment is also scaled by the same factor (i.e.,
ε∗ = αε), then the new program speedup, S∗ is the same as

S and given by
(T + ε)− Tvirtual

T
.

Proof. We can prove the above theorem by extending Equa-
tion 1. Since the execution time of all the segments is scaled
by α, the new execution time of the program, T ∗, is now
given by,

T ∗ = αE(b5) + α.max


E(b1) + E(a1) + E(a2) + E(c2)

E(b1) + E(a1) + E(b4)
E(b1) + E(b2) + E(b3) + E(b4)
E(b1) + E(b2) + E(c1) + E(c2)


= αT (4)

Similarly, we can derive T ∗
new = αTnew and T ∗

virtual =
αTvirtual (omitted due to space constraints). Note that ε is
also scaled by α. Finally, combining Equations 3 and 4:

S∗ =
(T ∗ + αε)− T ∗

virtual

T ∗ =
(T + ε)− Tvirtual

T
(5)

3.2 VCoz: Theory to Practice
The proved theorem is important and functional as it as-

serts that casual profiling of an application on one system
will be similar to the causal profiling of that application on
another system if all the code segments run x% faster or
slower. In practice, every code segment is built from a series
of CPU, memory, and I/O operations. So, we can hypothet-
ically split a code segment into smaller slices of only CPU
or memory or I/O operations as demonstrated in figure 3 by
different colors. In figure 3(a) two example code segments
(A and B) are run on a target device. The relative execu-
tion time of these two code segments is 78/56 = 1.4. Figure
3(b) shows the same two segments executed on the host de-
vice with dissimilar hardware components. In this example,
the host has a processor that runs 20% slower (αcpu = 1.2),
a memory with 50% slower bandwidth (αmem = 1.5), and
I/O systems (including disk, network, etc.) that operate 2×
faster (αio = 0.5). Therefore, the relative execution time
of the code segments is different on the host (84/71 = 1.2),
leading to incompatible causal profiling of the target de-
vice. To achieve a similar relation, the different slices in
the code segments have to retain an identical scaling factor
from target to host. In figure 3(c), the CPU and I/O on
the host are adjusted to match the speed of memory, i.e.,
the processor runs 25% (αmem/αcpu) slower and I/O sys-
tems 3× (αmem/αio) slower. This adjustment preserves the
relative execution time of the two segments on the target
device since all the slices scale by α = αmem = 1.5. Figure
3(d) demonstrates another adjustment to the host hardware
to conserve the relative execution time of code segments
but this time, both segments scale by α = αio = 0.5. For
this case, CPU and memory are adjusted to operate 3×
(αcpu/αio) and 2.4× (αmem/αio) faster, respectively.
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Figure 3: Two code segments A and B (split into CPU,
memory, and I/O slices) running on (a) target device; (b)
host device with different hardware component speeds; (c)
host device with all hardware components executing 50%
slower than the target device; d) host device with all the
hardware components executing 2× faster.

Based on this idea, we design and implement a prototype
of VCoz that configures the hardware components of the
host system to simulate the causal profiling of target de-
vices. Figure 4 presents the design of VCoz. First, VCoz
estimates the performance scaling factor of each component
on the host. To do so, it either compares spec of two hard-
ware components or runs performance tests where micro-
benchmarks stress distinct hardware resources on both sys-
tems and compares the results. For any pair of target and
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Figure 4: Design overview of VCoz containing inputs, mod-
ules, and outputs of each module.

host, the stress tests are performed only once, and the mea-
sured scaling factors are stored in a database to eliminate
the need for future access to the same devices.
After estimating the scaling factor of each hardware com-

ponent, VCoz optionally normalizes them. Normalization
handles two scenarios that arise on real devices. (i) In prac-
tice, sometimes the host system does not provide a knob for
tuning a hardware component (e.g., memory). In this case,
all the other resources are normalized by a scaling factor
determined by the untunable component. (ii) The scaling
factor of a component can be beyond the range of config-
urable values. For example, consider the CPU, and let’s say
it has to be scaled by 5×. However, the attainable CPU fre-
quency on the host may limit the scaling to at most 4×. In
this case, VCoz divides all the resources’ (e.g., CPU, mem-
ory, and I/O components) scaling factors by 5.
Component tuning adjusts the hardware component ac-

cording to the normalized factors. In our prototype, we nor-
malize by memory since most of the systems do not expose
a knob to change RAM operating frequency. Otherwise,
VCoz changes RAM frequency either in BIOS or OS-level.
For CPU, we modify the clock speed of all the cores us-
ing the CPUfreq governor in the Linux kernel [7]. For I/O,
we adjust the interface of each I/O peripheral. Currently,
VCoz configures the network interface using Linux traffic
control utility (tc) [10] to restrict the uplink and downlink
bandwidth of the system. It can also be easily extended to
support other I/O components such as disk (using hdparm
[9] in the Linux kernel). Once all the hardware components
are tuned, VCoz runs the original Coz profiler on the appli-
cation to generates a what-if graph. According to the theory,
the host generated what-if graph will be the same as the one
generated by Coz on the target device.

4. EXPERIMENTAL SETUP
To validate the above hypothesis we run Coz [6] directly

on the target device and compare it against VCoz for dif-
ferent applications. The details on porting Coz to mobile
devices are presented in appendix A. Figure 7 shows our
testbed for this validation. The code snippet spawns two
threads where each thread invokes a different benchmark.
The top diagram in Figure 7 shows the program execution
timeline for this testbed. We select the line corresponding to
the slowest benchmark (i.e., line 10 which belongs to thread

2) for speedup. Consequently, Coz generates a what-if graph
similar to the one shown at the bottom of the figure.

benchmark 1thread 1

thread 2 benchmark 2

Test case run timestart end

1 void f1(){
2 // benchmark 1
3 }
4 void f2(){
5 // benchmark 2
6 }
7 Int main(){
8 Pthread t1, t2;
9 Pthread_create(t1,f1);
10 Pthread_create(t2,f2);
11 Pthread_join()
12 return 0;
}

line speeduppr
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Figure 5: Description of test-case: the baseline code, pro-
gram execution timeline (top diagram), and expected what-
if graph generated by Coz profiler (bottom diagram).

We integrate benchmarks with different types of work-
loads in our testbed: CPU-intensive (LU and Cholesky de-
composition from Splash [24]), memory-intensive (stream
benchmark [14]), and I/O-intensive (network client-server
benchmark). Note that benchmarks can have a mix of all
three types of instructions (CPU, memory, and I/O). For ex-
ample, Cholesky decomposition contains memory load/store
operations to read/write matrices. However, to examine the
impact of hardware component tuning in VCoz, we consider
benchmarks to primarily stress one component.
The target device is Nexus 6P with quad-core ARMCortex-

A53 + quad-core ARM Cortex-A57 processor, and the host
device is MacBook Air 2.2 GHz Intel Core i7 processor.
Both systems have Low Power Double Data Rate (LPDDR)
dual channel memory operating on 1600MHz, so they are
expected to have similar memory performance, i.e., αmem =
1. The processors, however, have different architecture, so
VCoz needs to find the CPU scaling factor. For this rea-
son, VCoz runs multiple CPU-intensive benchmarks (from
Phenoix [23] and Splash [24] test suites) and compares the
execution time on the host and target devices as shown in
Table 1. We observe that the host x86 processor computes
approximately 2.3× faster than the mobile ARM processor
(i.e., αcpu = 2.3). We consider the network interface as an
example of I/O in this paper. For each experiment, we try
20 different speedups from 0 to 100% and 4 to 8 profiling
runs for each speedup.

Benchmark Nexus 6P MacBook Air ratio (αcpu)
Matrix Multiply 3.1 s 1.5 s 2.1

FFT 56 ms 23 ms 2.4
LU 2.3 s 1.0 s 2.3

Word Count 38 s 16 s 2.3
Cholesky 1.1 s 450 ms 2.4

PCA 690 ms 300 ms 2.3

Table 1: Execution time of 6 CPU-intensive benchmarks on
Nexus 6P and MacBook Air.

5. RESULTS
We compare the results of virtual causal profiling (VCoz)

with the causal profiler (Coz) that runs directly on the de-
vice to assess the functionality of VCoz and evaluate the



accuracy of our prototype. Figure 6 shows the correspond-
ing what-if graphs in purple and blue lines, respectively,
for various combinations of benchmarks that stress different
hardware resources. Additionally, we also compare them
against the results generated by Coz on the host x86 system
(yellow line) to evaluate the impact of hardware tuning.

5.1 CPU and Memory test-cases
CPU-CPU. We first consider benchmarks with a similar

workload in the testbed (section 4). We run two different
CPU-intensive benchmarks namely, Cholesky and LU de-
composition, concurrently and the results are shown in the
leftmost plot in Figure 6. As we can observe, VCoz predicts
the result of causal profiling with at most 13.6% variance.
Moreover, the graphs generated by Coz on the host (no CPU
frequency tuning) and VCoz with the host CPU frequency
tuned to 1.5 GHz are comparable to VCoz with accurate
CPU tuning (900 MHz), which indicates that CPU tuning
is not effective for this test case. This supports our theorem
since scaling CPU by any factor would homogeneously scale
both execution paths, maintaining the relative speed of code
segments and hence producing identical what-if graphs.
CPU-Memory. In this test case, we run the stream

benchmark on one thread and LU decomposition on the
other to evaluate a combination of two different workloads:
memory-intensive and CPU-intensive. According to Figure
6, VCoz predicts the program speedup on the target device
with less than 15.8% error on the host system while Coz
incurs more than 50% error. Note that CPU and memory
have different scaling factors in our experiments. Therefore,
this test case highlights the limitation of Coz in profiling
devices where CPU code segments execute at different rel-
ative speeds compared to memory code segments, thereby
violating the necessary condition for causal profiling.

5.2 I/O test-cases
Now we evaluate the behavior of VCoz when the program

has I/O operations. Here we run a network-heavy bench-
mark (server-client data streaming) as an example of an
I/O-intensive workload. On the concurrent thread, we run
a CPU-intensive benchmark (LU decomposition).
Matched network. First, both systems are connected to

the same network (100 Mbps), which allows VCoz to match
the I/O speed without adjusting the network module of the
host system (i.e., αio = 1). So, it only adjusts the CPU
frequency. As we can infer from the third plot in Figure
6, VCoz predicts the result of Coz on the device with high
precision (less than 9.1% variance). Meanwhile, Coz is un-
able to uncover the potential impact of optimizations on the
target device since it incorrectly predicts marginal program
speedup.
Different network. Now, we connect the Nexus 6P to

a slower network connection, 17.7 Mbps. This is the global
average network connection for mobile devices in 2020 [1, 5].
Since the I/O speed of the target device is modified, VCoz
reapplies component matching. The I/O speed is now 5.6×
slower, and the CPU computing speed is 2.3× slower. If
VCoz normalizes by the I/O scaling factor, the CPU has to
run 2.4× faster. Given the operating frequency of the host
system is (2.2 GHz) and the maximum available CPU fre-
quency is 3.1 GHz (in turbo boost mode), VCoz cannot ful-
fill this scaling factor. However, if we normalize by the CPU
scaling factor, the network speed has to reduce by 2.4×, and

VCoz can satisfy this by adjusting the network interface of
the host system to limit the bandwidth to 41 Mbps. Figure
6 shows how remarkably VCoz predicts the actual causal
profile with less than 11.4% error. Meanwhile, Coz cannot
detect the behavior of the critical path (no changes in the
critical path) in the range of speedup because of missing
characterization of the underlying hardware of the target
device.

6. RELATED WORK
Profilers are an important tool for performance analysis of

applications. Tools such as gprof [21] and Oprofile [11] along
with the Linux built-in hardware counter profiling tool, perf
[12], and the equivalent for Android, simplePerf [13] are
among the popular profiling tools for desktop and mobile
developers. These tools rank code by its contribution to to-
tal execution time, however, code that runs for a long time
is not necessarily a good candidate for optimization. Causal
profiling captures the dynamic behavior of the critical path
of the application because it applies virtual speedups di-
rectly into the execution path at runtime. Several recent
studies [28, 27, 22] have applied causal profiling for identify-
ing bottlenecks in multithreaded applications and/or what-if
performance analysis of large software systems such as web
browsers [22] which further underscores its potential impact.
Besides profilers, developers exploit simulators for perfor-

mance analysis for cross-platform application development
and optimization. Cycle-accurate instruction set simulators
(ISS) such as gem5 [16] and QEMU [15] and full-system em-
ulators such as Android studio emulator [2] and Appetize
[4] for iOS generate relatively accurate timing and power
consumption for system-level performance analysis. How-
ever, simulation on these platforms is considerably slower
which makes it infeasible for comprehensive what-if analy-
sis [26, 25, 19] which typically requires a large number of
experiments to explore the hardware and software design
space. Multiple prior efforts have attempted to enhance the
functionality and speed of ISS for performance and power
analysis of mobile platforms [17, 20]. Nonetheless, they are
still slow making them infeasible for causal profiling [26].
In this paper, we present the theory and proof-of-concept of
virtual causal profiling which enables scalable cross-platform
performance analysis on real devices.

7. CONCLUSIONS
We present a theoretical formulation for causal profiling

and extract a necessary condition for virtual causal pro-
filing. According to the theory, the result of causal pro-
filing only depends on the relative execution speed of the
different code segments. Therefore, we design VCoz that
enables virtual causal profiling by emulating the hardware
configuration of say, mobile devices on a laptop/desktop for
causal profiling by controlling the relative performance of
various resources, such as CPU, memory, and network. We
implement a prototype of VCoz and evaluate it on multi-
ple benchmarks with a combination of different workloads
(CPU-intensive, memory-intensive, and I/O-intensive). Our
results show that VCoz can predict the results of causal pro-
filing with significant accuracy by tuning different hardware
components. For example, VCoz predicts the outcome of
the Coz profiler on an Arm-based Nexus 6P mobile device
with less than 16% variance on an x86 laptop while the origi-
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Figure 6: Comparison of VCoz and Coz on host and target devices for different test cases. Plots from left to right: 1) CPU
frequency tuning on a program with two streams of compute-heavy code. 2) Memory and CPU heavy code segments. 3) I/O
and CPU heavy code segments. Both devices are connected to 100 Mbps network connection. 4) I/O and CPU heavy code
segments. Host is connected to 100 Mbps network connection and Nexus 6P is connected to 17.7 Mbps.

nal Coz profiler misses predicting optimization opportunities
or generates inaccurate what-if graphs. As a result, VCoz
advances the state-of-the-art in designing practical profilers
that are much needed for scalable cross-platform application
development.
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APPENDIX
A. PORTING COZ TO MOBILE DEVICES
The existing implementation of Coz is merely designed for

and tested on the desktop applications (e.g., applications
running on x86 systems) that host Linux OS. Therefore,
the current version is not compatible with the majority of
smartphones and mobile devices in the market. To improve
the usability of this profiler among mobile users, we lever-
age Coz to support profiling of the applications that run on
Android devices with ARM architectures. However, this ex-
tension is non-trivial and requires substantial re-engineering
and troubleshooting of Coz and its dependent libraries. Fig-
ure 7 shows an overview of the Coz profiler and its inter-
action with the dependent libraries. The Coz bootstrap-
per in the figure interposes the entry point of the target
application (__libc_start_main) to initiate a profiler in-
stance under the same process. This profiler instance uses
third-party libraries (e.g., libdwarf.so) to read and process
debugging information of the target application and C++
Pthread library to interpose Pthread APIs. It also invokes
Linux perf_event system calls under the hood to monitor
and profile the target application.

target application COZ 
profiler

perf_event
syscalls

COZ bootstrapper
(python) 

libpthread.solibdwarf.so libelf.so

__libc_start_main wrapper

dynamic libraries

Figure 7: Overview of COZ profiler and dependent libraries.

To safely port Coz to Android devices, we rewrite its boot-
strapper for two main reasons. First, the current code is
not compatible with native Android apps. For instance,
Google Android Bionic [8], the standard C library for the
Android operating system, uses different entry points (e.g.,
__libc_init) and startup procedure than Linux standard
C library. Second, most of the bootstrapper is written in
Python which is not a standard language for Android sys-
tems. So, we rewrite the code in C++ and generate a native
executable that can be safely launched directly by Android
applications or via ADB shell without requiring a Scripting
Layer for Android (SL4A).
Google’s Android development kit (NDK) [3] is the of-

ficial toolset for porting C/C++ programs to Android de-
vices, however, not all of the C++ APIs and libraries for
GNU/Linux are implemented by Android NDK. Therefore,
the majority of our effort is to provide a workaround for

missing functionalities in the Coz code and third-party li-
braries. In some cases, we implement the missing functions
(for example, std::to_string(), an STL function used in
libelf.so and libdwarf.so) or replace them with compat-
ible implementations. For instance, we use stack tracing
APIs implemented in stdio.h instead of execinfo.h. The
most challenging part, however, is to find a workaround for
Pthread APIs since Coz interposes several Pthread APIs to
handle thread suspension in the target application. Two fun-
damental issues with Pthread APIs prevent the current im-
plementation of Coz to be ported to Android devices. 1) The
entire Pthread API is not supported on Android devices.
That being said, we remove all associated modules that be-
long to unsupported Pthread APIs (such as sigwaitinfo,
sigtimedwait, pthread_tryjoin_np, pthread_sigqueue,
pthread_timedjoin_np, pthread_barrier_wait) from the
code. This pruning does not invalidate the functionality
of the profiler since valid Android applications do not have
calls to the unsupported Pthread APIs. 2) Pthread APIs are
directly implemented through C/C++ library on Android
rather than a separate Pthread library as in GNU/Linux
systems. Thus, the existing implementation for loading and
interposing symbols of the Pthread dynamic library, i.e., us-
ing dlopen() and dlsym() to load libpthread.so, is not
compatible with Android. We fix this issue by providing
Android-compatible wrapper functions for loading Pthread
symbols.
Android NDK contains the implementation of the major-

ity of the Linux perf APIs for Android devices. Since Perf
APIs use kernel syscalls and read hardware counters, we
have to validate and inspect their functionality on Android
devices. Accordingly, we sample hardware counters used by
Perf APIs in Coz on the Nexus 6P mobile with ARM v8 pro-
cessor for multiple benchmarks in the Phoenix benchmark
suite [23]. We then compare our log file with the log file
from the same benchmarks on the x86 system hosting Linux
OS and confirm the compatibility of the Perf APIs used in
Coz as well as the functionality of the entire Coz sampling
modules. Finally, we modify the Coz build and configura-
tion files and pass specific switches and configurations for
building ARM targets to the Android NDK compilers.


