
Reliability and Availability
Modeling in Practice

IFIP 7.3 Performance Conference -- Tutorial
Nov. 2, 2020

1

IFIP 7.3 Performance Conference 2020

 Students may get a certificate for
participation in this Tutorial

 You need to fill in a google form:


https://docs.google.com/forms/d/e/1FAIp
QLSe9Fgh5rdxcP9RLPMktHUHrGXZlMGKux
KC_7JICedzQWjrVyw/viewform

2

Tutorial Objective

 To provide an overview and state of the art
of analytic methods for reliability and
availability assessment

 To provide real-life examples that show the
use of analytic methods in practice

 To provide current challenges faced in such
modeling projects

 Ref: Trivedi & Bobbio, Reliability and Availability:
Modeling, Analysis, Applications, Cambridge University Press, 2017

3

Tutorial Outline

 Introduction
 Reliability and Availability Models
 Model Types in Use
 Illustrated through several real examples

 Conclusions
 References

4

Health & Medicine

Communication

Avionics

Entertainment Banking

Motivation:
Dependence on Technical Systems

5

Example Failures from High Tech companies

Mar. 2015 , Gmail was down for 4 hours and 40 min.

Mar. 2015, Down for 3 hours affecting Europe and US

Sept. 2015, AWS DynamoDB down for 4 hours impacting
among others Netflix, AirBnB, Tinder

Dec. 2015, Microsoft Office 365 and Azure down for 2
hours

Mar. 2015, Apple ITunes, App Stores long 0utage: 12 hours

6

More examples of real failures

Feb. 2017 Amazon S3 service outage (almost 6 hours)

Jul. 2017 - Google Cloud Storage service outage (3
hours and 14 min.) - API low-level software defect

Jul. 2017 - Microsoft Azure service outage (4 hours) –
Load Balancer Software bug

7

Very Recent Examples

 In Commercial aircrafts (Boeing 737 Max
software problem)
 Ethiopian Airlines Flight, March 2019,

149 people died
 Lion Air Flight crash, Oct. 2018,

189 people died

Need Methods

 That reduce the occurrence of system failures and reduce
downtime due to these failures (contributed by hardware,
software and humans)

 For System Reliability/Availability assessment and bottleneck
detection during:
 Design phase
 Certification phase
 Operational phase

9

Introduction

10

Basic Definitions

Need for a new term

 Reliability is often used in a generic sense as an
umbrella term.

 Reliability is also used as a precisely defined
mathematical function.

 To remove the confusion, IFIP WG 10.4
proposed Dependability as an umbrella term
and Reliability is to be used as a well-defined
mathematical function.

11

Dependability– An umbrella term

 Trustworthiness of a system such that reliance can justifiably be
placed on the service it delivers

Dependability

Attributes
Availability
Reliability
Safety
Maintainability

Fault Prevention
Fault Removal
Fault Tolerance
Fault Forecasting

Means

Threats
Faults
Errors
Failures

12

Difference between reliability and
availability

13

 reliability refers to failure-free operation
during an entire interval,

 availability refers to failure-free operation at a
given instant of time.

Definitions from IFIP WG10.4

 Failure occurs when the delivered service no longer
complies with the desired service

 Error is that part of the system state which is liable
to lead to subsequent failure

 Fault is adjudged or hypothesized cause of an error

Faults are the cause of errors that may lead to failures
Fault Error Failure

14

A Classification of Faults

 Hardware vs. Software vs. Human
 Hardware: Permanent, Intermittent, Transient
 Network: Node vs. Link
 Software: Bohrbugs, Mandelbugs, Heisenbugs, Aging-

related bugs

Failure Classification

 Omission failures (Send/receive failures)
 Crash failures
 Infinite loop

 Response or Value failures
 Timing failures

 Early
 Late (aka performance failure or dynamic failures)

 Safe vs. Unsafe failure
 Breach of confidentiality or breach of integrity or loss of use

Basic Definitions

 One shot Reliability R:

When is this applicable?

 Reliability R(t) :
X : Time to failure of a system (TTF), or lifetime
random variable
F(t): distribution function of system lifetime

Reliability is the complementary distribution function
of TTF

() () ()tFtXPtR −=>= 1

17

Basic Definitions

 Mean Time To system Failure:

where f(t): density function of system lifetime

[] () ()∫∫
∞∞

===
00

dttRdtttfXEMTTF

Make a clear distinction between TTF, R(t) and MTTF

18

Basic Definitions

 Availability

Operating and providing
required functions

Failed and
being
restored

1

0

Operating and providing
required functions

System Failure and Restoration Process
I(t) is the indicator function

I(t)

19

Basic Definitions

 Instantaneous Availability A(t):

 From the figure in the last slide, the availability at time t
becomes:

 This is sometimes called point-wise availability,
instantaneous availability, or transient availability. A(t)
can be asked for at any point t in time

A(t) = P (system working at t)

A(t)=P(I(t)=1)

20

Basic Definitions

 Interval reliability measure introduced by Barlow and Hunter
in 1961, combines availability A(t) and reliability R(τ) :
 Available when needed (at time t) & as long as needed (for τ time units)

 Interval reliability further developed in:
 Trivedi & Bobbio, Reliability and Availability: Modeling, Analysis,

Applications, Cambridge University Press, 2017

 Wang & Trivedi, Modeling User-Perceived Service Reliability based
User-Behavior Graphs, IJRQS, 2011

 Trivedi, Wang & Hunt, Computing the number of calls dropped due to
failures, ISSRE2010

 Mondal, Yin, Muppala, Alonso, Trivedi, Defects per Million Computation
in Service-Oriented Environments, IEEE Trans. on Services Comp., 2015

21

Basic Definitions
Steady-state availability (Ass) or just availability

Long-term probability that the system is available
when requested:



MTTF is the system mean time to failure
MTTR is the system mean time to recovery

may consist of many phases
For a non-fault-tolerant system no distributional
assumptions needed

MTTRMTTF
MTTF

+
=

ssA

22

Basic Definitions

Steady-state availability (Ass) or just availability
Long-term probability that the system is available
when requested (also applies to a fault-tolerant
system):

MTTF is the “equivalent” system mean time to
failure, a complex combination of component MTTFs
MTTR is the “equivalent” system mean time to
recovery

MTTRMTTF
MTTF

+
=ssA

23

Basic Definitions

 Downtime in minutes per year
 In industry, steady-state (un)availability is usually

presented in terms of annual (steady-state) downtime.

 Downtime = 8760×60 ×(1- Ass) minutes.

 It is also common to define the availability in terms of
number of nines

5 NINES (Ass = 0.99999)  5.26 minutes annual downtime
4 NINES (Ass = 0.9999)  52.56 minutes annual downtime

24

Number of Nines– Reality Check

 49% of Fortune 500 companies experience
at least 1.6 hours of downtime per week

 Approx. 80 hours/year=4800 minutes/year

 Ass=(8760-80)/8760=0.9908

 That is, between 2 NINES and 3 NINES!

 This study combines planned and unplanned
downtime

25

Failures & Downtime Lead to

 A Loss of Reputation
 A Loss of Revenue
 Possible Loss of Life

26

 That reduce system failures and reduce downtime due to
these failures (contributed by hardware, software and
humans)

 System Reliability/Availability assessment and bottleneck
detection methods can be used:
 To compare alternative designs/architectures
 Find bottlenecks, answer what if questions, design optimization

and conduct trade-off studies
 At certification time
 At design verification/testing time
 Configuration selection phase
 Operational phase for system tuning/on-line control

Need Methods

27

Methods to Improve Dependability

 Fault Avoidance
 Employ high reliability components

 Fault Removal
 Careful Testing to remove faults

 Fault Tolerance
 Utilize Redundancy

 Fault Forecasting
 Predict failures and use for preventive maintenance

28

Methods Overview (Redundancy)

 Redundancy

 Coding

 Time

 Use of Multiple Redundant Components, that is,

more than required for the performance needs
29

Methods Overview (Redundancy)

Time

Retry

Restart

Checkpoint/
restart

Multiple
components

Parallel
Identical

Non-
identical

k of n
Identical

Non-
identical

Standby

Cold

Warm

Hot

Coding
Hamming

CRC

30

Methods Overview (Maintenance)

Maintenance

Reactive

Stages
Detection
Location
Recovery

Escalated
Restart
Reboot
Repair

Proactive

Time based

Condition based

31

 That reduce system failures and reduce downtime due to
these failures (contributed by hardware, software and
humans)

 System Reliability/Availability assessment and bottleneck
detection methods can be used:
 To compare alternative designs/architectures
 Find bottlenecks, answer what if questions, design optimization

and conduct trade-off studies
 At certification time
 At design verification/testing time
 Configuration selection phase
 Operational phase for system tuning/on-line control

Need Methods

32

Quantitative Assessment approaches

 Black-box or Data-driven
(measurement data + statistical inference):

 The system is treated as a monolithic whole, without
explicitly taking its internal structure into account

 Very expensive especially for ultra-reliable systems
 ALT can help reduce the cost

 Generally applicable to small systems that are not very
highly reliable

 Not feasible for system under design/development

33

Quantitative Assessment approaches
 White-box (or Model-driven):
 When no data is available for the system as a whole
 Probability Model (e.g., RBD, Ftree, Markov chain)

constructed based on the known internal structure of
system – its components, their characteristics and
interactions between components

 Derive the behavior of ensembles (combinations of
components to form a system or combinations of multiple
systems to form a system of systems) from first principles

 Used to analyze a system with many interacting and
interdependent components

 Need input parameters for components and subsystems
34

Quantitative Assessment approaches

 Combined approach
 Use black-box approach at subsystem/component

level
 Use white-box approach at the system level
 Thus a combined Data + Model driven approach

35

Two Types of Uncertainty

 Aleatory (irreducible)
 Randomness of event occurrences in the real system

captured by various distributions in the Probability
Model (e.g., RBD, Fault tree, Markov chain)

 Epistemic (reducible)
 Introduced due to finite sample size in estimating

parameters to be input to the Probability Model
 Propagating epistemic uncertainty through a

Probability Model is a topic that will not be covered in
this tutorial – can be a subject of another tutorial!

36

Outline

 Introduction and Motivation
 Reliability and Availability Models
 Conclusions
 References

37

Overview of Assessment Methods

Numerical solution via a tool

Closed-form
solution

Model-driven

Discrete-event simulation

Hybrid

Analytic methods
Numerical solution
of analytic models
not as well utilized;
unnecessarily excessive
use of simulation

Quantitative Assessment

Data-driven Error/Failure/Recovery data analytics

38

Analytic Methods Taxonomy

Hierarchical composition

Fixed point iterative methods

Analytic methods

Non-state-space methods

State-space methods

Model-driven

Discrete-event simulation

Hybrid

Analytic Methods

Quantitative
Assessment

Data-driven

39

Non-State-Space Methods : taxonomy

Non-state space methods

SP reliability block diagrams (RBD)

Fault trees

Fault trees with repeated events

Non-SP reliability block diagrams (relgraph)

Extensions such as multi-state components/systems, phased-mission systems etc.

40

Cisco & Juniper Routers

RBD of Cisco 12000 GSR

RBD of Juniper M20
K. Trivedi, “Availability Analysis of Cisco GSR 12000 and Juniper M20/M40”
Cisco Internal report, 2000.
Red colored block means a sub-model.

41

Modeling High Availability Systems: Sun
Microsystems

Top level RBD consists of all the subsystems joined by
series, parallel and k/n blocks.
Red color means a sub-model.

Trivedi et al., Modeling High Availability Systems,
PRDC’06 Conference, Dec. 2006, Riverside, CA

Sun Microsystems

42

Series-Parallel RBDs

 System reliability (availability) formulas :
 Assuming statistical Independence of failures (and repairs)
 Reliabilities (availabilities) multiply for blocks in series

 Un-reliabilities (un-availabilities) multiply
for blocks in parallel

 Blocks in k-out-of-n have a simple formula
 Identical case Rk|n= ∑𝑗𝑗=𝑘𝑘𝑛𝑛 𝑛𝑛

𝑗𝑗 𝑅𝑅𝑗𝑗(1 − 𝑅𝑅𝑛𝑛−𝑗𝑗

 Non-identical case









>=

=

⋅+⋅−= −−−

ijR
R

RRRRR

ij

n

nknnknnk

 when ,0
1

)1(

|

|0

1|11||

43

∏
=

=
n

i
is RR

1

Fault Trees

 Fault Tree is a pessimist’s model as opposed to RBD that can be
considered optimists’ models

 Components are represented as leaves or terminal nodes

 Internal nodes are logic gates and Root node indicates system failure

 Components or subsystems in series are connected with OR gates

 Components or subsystems in parallel are connected with AND gates

 Failure of a component or subsystem causes the corresponding input
to the gate to become TRUE

 Whenever the output of the topmost gate (root node) is TRUE, the
system is considered failed

44

Fault Tree Model of GE Truck- AC6000

TOPS = Suspension
BR = Brake Rigging
L = Liner
O = Others

S OLBR

45

Fault Tree Model of GE Equipment
Ventilation System

Fault Tree with Repeated events; inverted triangle indicates such events

46

47

Software Package SHARPE

 SHARPE: Symbolic-Hierarchical Automated Reliability and
Performance Evaluator

 Stochastic Modeling tool installed at over 1000 Sites;
companies and universities

 Ported to most architectures and operating systems
 Used for Education, Research, Engineering Practice
 Users: Boeing, 3Com, EMC, AT & T, Alcatel-Lucent, IBM,

NEC, Motorola, Siemens, GE, HP, Raytheon, Honda,…
 http://sharpe.pratt.duke.edu/
 It is the core of Boeing’s internal tool called IRAP

A Fool with a Tool is still a fool

48

http://sharpe.pratt.duke.edu/

Fault trees

 Major characteristics:
 Fault trees without repeated events can be solved in polynomial

time
 Fault trees with repeated events -Theoretical complexity:

exponential in number of components

 Use Factoring (conditioning) [In SHARPE use factor on and bdd off]

 Find all minimal cut-sets & then use Sum of Disjoint products (SDP) to
compute reliability [In SHARPE use factor off and bdd off]

 Use BDD (Binary Decision Diagram) approach [In SHARPE use bdd on]

 In practice, can solve fault trees with thousands of components

49

Solution time for Very Large Fault trees

50

Such large models can be solved because of independence assumption – non-states-space models

Fault Trees (Continued)

 Extensions to Fault-trees include a variety of different gate

types: NOT, EXOR, Priority AND, cold spare gate,

functional dependency gate, sequence enforcing gate, etc.

Some of these are “static” while others are “dynamic”

gates

51

Reliability Graph (relgraph)

 Consists of a set of nodes and edges

 Edges represent components that can fail

 Source and target (sink) nodes

 System fails when no path from source to sink

 A non-series-parallel RBD

 S-t connectedness or network reliability problem

52

Relgraphs

 Solution methods for Relgraph
 Find all minpaths followed by SDP (Sum of Disjoint

Products)
 BDD (Binary Decision Diagrams)-based method
 Factoring or conditioning
 Monte Carlo method

 The first two methods have been implemented in
our SHARPE software package

53

Avionics

 Reliability analysis of each major subsystem
of a commercial airplane needs to be carried
out and presented to Federal Aviation
Administration (FAA) for certification

Real world example from Boeing Commercial Airplane Company

55

Reliability Analysis of Boeing 787

 Most of the subsystems are improved or modified
versions of subsystems used in earlier planes
 Models are also modified version of the earlier

models
 Occasionally there is an entirely new subsystem

 Model needs to be done from scratch
 Current Return Network in Boeing 787 is one such

example
 Several of my former students are in the Boeing

Reliability Engineering group

56

Reliability Analysis of Boeing 787

 Current Return Network Subsystem
 Modeled as a Reliability Graph
 Consists of a set of nodes and edges
 Edges represent components that can fail
 Source and target nodes
 System fails when no path from source to

target
 Compute probability of a path from source to

target

57

Reliability Analysis of Boeing 787

A2

A4

A5

A1

A11

A13

A14

A7

A8

A9

A6

A10

A3
B3

B4

B6

B1

B13

B14

B15

B8

B9

B10

B7

B11

B2

B12

A12

B5

B16

C1

C3

C4

C5

C2

C6

D3

D5

D7

D1

D16

D17

D19

D9

D12

D13

D8

D14

D2

D15

D4

D18

D6

D10

D20

D11
E6

E7

E8

E5

E1

E2

E3

E4

E10

E11

E12

E9

E14

E13

target

F1

F8

F3

F2
F4

F5

F6

F9

F7

F10

source

 Current Return Network Modeled as a Reliability Graph

58

Reliability Analysis of Boeing 787 (cont’d)

 Solution methods implemented in our SHARPE
software package for relgraph
 Find all minpaths followed by SDP (Sum of Disjoint

Products)
 BDD (Binary Decision Diagrams)-based method

 Boeing tried to use SHARPE for this problem but
…

59

Reliability Analysis of Boeing 787 (cont’d)

A2

A4

A5

A1

A11

A13

A14

A7

A8

A9

A6

A10

A3
B3

B4

B6

B1

B13

B14

B15

B8

B9

B10

B7

B11

B2

B12

A12

B5

B16

C1

C3

C4

C5

C2

C6

D3

D5

D7

D1

D16

D17

D19

D9

D12

D13

D8

D14

D2

D15

D4

D18

D6

D10

D20

D11
E6

E7

E8

E5

E1

E2

E3

E4

E10

E11

E12

E9

E14

E13

target

F1

F8

F3

F2
F4

F5

F6

F9

F7

F10

source

 Too many minpaths

 Idea: Compute bounds instead of exact reliability
 Lower bound by taking a subset of minpaths
 Upper bound by taking a subset of mincuts

60

Reliability Analysis of Boeing 787 (cont’d)

 Our Approach : Developed a new efficient algorithm for
(un)reliability bounds computation and incorporated in SHARPE

• 2011 patent for the algorithm jointly with Boeing/Duke
• “Fast computation of bounds for two-terminal network reliability”, EJOR 2014
• Satisfying FAA that SHARPE development used DO-178 B software standard

was the hardest part
• As per A.V. Ramesh (Boeing), this algorithm (and SHARPE) are always used

for modeling CRN subsystem in other Boeing commercial aircraft

61

RBD->Relgraph->ftree

 Series-parallel RBD and Fault trees without
repeated event are equivalent

 Relgraph is more powerful than RBD since non-
series-parallel behavior can be accommodated

 Fault trees with repeated event are more powerful
than relgraphs

 Most scalable method is the bounding algorithm
for relgraphs; this needs to be extended to fault
trees

62

Power-hierarchy of modeling formalisms

State space

Non-State space

63

Non-state-space Methods (cont’d)
 Non-state-space methods are easy to use and have relatively fast

algorithms for system reliability, system availability, system MTTF & to
find bottlenecks assuming stochastic independence between system
components
 Series-parallel composition algorithm
 Factoring (conditioning) algorithms
 All minpaths followed by Sum of Disjoint Products (SDP) algorithm
 Binary Decision Diagrams (BDD) based algorithms
 Bounding algorithm for relgraphs

 All of the above implemented in SHARPE

 Failure/Repair Dependencies are often present; RBDs, relgraphs,
FTREEs cannot easily handle these (e.g., shared repair, warm/cold
spares, imperfect coverage, non-zero switching time, travel time of
repair person, reliability with repair).

64

Statistical Dependence

The independence assumption is often unrealistic

65

Dependencies in the failure process are
 load dependencies,
 functional dependencies,
 cascading failures
 common cause failures
 Coincident (or near-coincident) faults

Dependencies in the repair process
 deferred maintenance
 shared repair facilities.

R. Fricks and K. Trivedi, “Modeling failure dependencies in reliability analysis using
stochastic Petri nets,” in Proc. European Simulation Multi-Conference (ESM ’97), 1997.

State-space methods : Markov chains

 To model complex interactions between components,
need to use paradigms like Markov chains or more
generally state space models.

 Many examples of dependencies among system
components have been observed in practice and
captured by continuous-time Markov chains (CTMCs).

 Extension to Markov reward models makes
computation of measures of interest relatively easy.

66

Analytic Methods Taxonomy

Analytic methods

Non-state-space methods

State-space methods
e.g., Cont. time Markov chain (CTMC)

67

Markov model of SIP on IBM WebSphere

 A CTMC availability model of the Linux OS

UP DN DWλOS

µOS

RP
αsp

bOSβOS

(1-bOS)βOS
DT

δOS

Detection delay, imperfect coverage, two-levels of
recovery modeled

How can you turn this into a reliability model?

68

A CTMC Reliability model of the Linux OS

69

A reliability model will have one or more absorbing states
An availability model will have no absorbing states

An absorbing state

SHARPE Input file for the Linux Model
echo Linux OS Availability Model
markov LinuxOS
1 2 los
2 3 dos
3 1 bos*beta
3 4 (1-bos)*beta
4 5 asp
5 1 mos
end

* Parameter values in per hr
bind
los 1/4000
dos 1
beta 6
bos 0.9
asp 1/2
mos 1
end

echo Steady-state availability
equal to probability of state UP

expr prob (LinuxOS,1)

end

70

SHARPE Output file for the Linux Model

Linux OS Availability Model

Steady-state availability equal to probability of state UP

prob (LinuxOS,1): 9.99633468e-001

71

SHARPE Input file for the Linux
Reliability Model (state 4 absorbing)
echo Linux OS Reliability Model
markov LinuxOS
1 2 los
2 3 dos
3 1 bos*beta
3 4 (1-bos)*beta
end
* initial state probabilities
1 1.0
2 0.0
3 0.0
4 0.0
end

* Parameter values
bind
los 1/4000
dos 1
beta 6
bos 0.9
asp 1/2
mos 1
end

echo Reliability at times 0 thru 10000 in
steps of 2000 equal to probability of state 1
func rel(t) tvalue(t;LinuxOS,1)
loop t,0, 10000, 2000
expr rel(t)
end
end

72

SHARPE Input file for the Linux
Reliability Model (state 4 absorbing)

Linux OS Reliability Model
Reliability vs time equal to probability of state 1

at time t
System reliability at times 0 thru 10000 in steps of
2000

t=0.000000
rel(t): 1.00000000e+000

t=2000.000000
rel(t): 9.50987909e-001

t=4000.000000
rel(t): 9.04617746e-001

t=6000.000000
rel(t): 8.60508971e-001

t=8000.000000
rel(t): 8.18551046e-001

t=10000.000000
rel(t): 7.78639141e-001

73

Markov (CTMC) Availability model of App Server

Application server and proxy server (with escalated levels of recovery)

Delay and imperfect coverage in each step of detection/recovery modeled

UA UR UB
(1-r)ρm

rρm
qρa

(1-q)ρa

bβm

RE
(1-b)βm

µ

UOUP
γ eδ2

1D

eδ2dδ1

(1-e)δ2

UN

δm

1N

(1-d)δ1

(1-e)δ2

2N (1-d)δ1

(1-e)δ2

eδ2 dδ1

 Failure detection
 By WLM
 By Node Agent
 Manual detection

 Recovery
 Node Agent

 Auto process
restart

 Manual recovery
 Process restart
 Node reboot
 Repair

74

CTMC with Infinitesimal Generator matrix Q
 Efficient/Scalable algorithms are known & are

implemented in software packages SHAREPE, SPNP for:
 Steady-state behavior:

 Transient behavior:

 Cumulative Transient behavior:

 Also derivatives of the probabilities with respect to
parameters – parametric sensitivity functions are
computed 75

1,0 == ∑
i

iQ ππ

)0(,)()(πππ givenQt
dt

td
=

dL(t)/dt = L(t) Q + π (0)
L(t): integrals of state probability vector

State-Space methods taxonomy

Can relax the assumption of exponential distributions

(discrete) State space
models

Markovian models

non-Markovian models

discrete-time Markov chains (DTMC)

continuous-time Markov chains (CTMC)

Markov reward models (MRM)

Semi-Markov process (SMP)

Markov regenerative process

Non-Homogeneous Markov

Phase-Type Expansion

76

Should I Use Markov (CTMC) Models?

+ Model Fault-Tolerance and Recovery/Repair

+ Model Dependencies

+ Model Contention for Resources and concurrency (performance)

+ Generalize to Markov Reward Models for Degradable systems

+ Can relax exponential assumption – SMP, MRGP, NHCTMC, PH

+ Performance, Availability, Performability, Survivability,
Resilience Modeling Possible

- Large State Space

77

Markov Models
 Modeling inter-dependence among components

 Simple model types such as RBD, Ftree, etc. do not suffice –
need to use Markov and other state space model types

 State space explosion problem

78

Problems with Markov (or State Space)
Models and their solutions
 State space explosion or the model

largeness problem or scalability problem
 Stochastic Petri nets and related formalisms

(stochastic process algebras) for ease of
specification and automated
generation/solution of underlying Markov
model ---

 This is called Largeness Tolerance

79

Scalable Model for IaaS Cloud
Availability and Downtime

Ref: Ghosh, Longo, Frattini, Russo, Trivedi,
“Scalable Analytics for IaaS Cloud Availability,”

IEEE Trans. Cloud Comput., 2014

80

Three Pools of Physical Machines (PMs)
To reduce power usage costs, physical machines
are divided into three pools [IBM Research
Cloud]

Hot pool (high performance & high power usage)
Warm pool (medium performance & power usage)
Cold pool (lowest performance & power usage)

Similar grouping of PMs is recommended by Intel*

*Source: http://www.intel.com/content/dam/www/public/us/en/documents/guides/
lenovo-think-server-smart-grid-technology-cloud-builders-guide.pdf

81

System Operation Details

Failure/Repair (Availability):
 PMs may fail and get repaired.
A minimum number of operational hot PMs are

required for the system to function.
 PMs in other pools may be temporarily assigned to the

hot pool to maintain system operation (migration).
Upon repair, PMs migrate back to their original pool
Migration creates dependence among pools

82

Analytic model
 Markov model (CTMC) is too large to construct by hand.
 We use a high-level formalism of stochastic Petri net (the

flavor known as stochastic reward net (SRN)).
 SRN models can be automatically converted into underlying

Markov (reward) model and solved for the measures of
interest such as DT (downtime), steady-state (instantaneous,
interval) availability, reliability, derivatives of these measures
--- all numerically by forming and solving underlying
equations

 Analytic-numeric solution as opposed to discrete-event
simulation

 Ref: Ciardo, Blakemore, Chimento, Muppala, Trivedi, “Automated generation
and analysis of Markov reward models using stochastic reward nets,” Linear
Algebra, Markov Chains, and Queueing Models, Springer, 1993

83

Monolithic Stochastic Reward Net Model

84

Other High-Level Formalisms

 Many other High-level formalism (like SRN) are
available and corresponding software packages exist
(SAN, SPA, ….)

 Can generate/store/solve moderate size Markov models
 Have been extended to non-Markov and fluid

(continuous state) models [MRSPN, FSPN]
 Ref: Choi, Kulkarni, Trivedi, “Markov Regenerative Stochastic Petri Nets,”

Perform. Evaluation,1994
 Ref: Horton, Kulkarni, Nicol, Trivedi, “Fluid stochastic Petri nets: Theory,

applications, and solution techniques,” Eur. J. Oper. Res., 1998

85

Monolithic Model
Monolithic SRN model is automatically translated into CTMC or
Markov Reward Model
However the model not scalable as state-space size of this model is
extremely large
#PMs per pool #states #non-zero matrix entries

3 10, 272 59, 560

4 67,075 453, 970

5 334,948 2, 526, 920

6 1,371,436 11, 220, 964

7 4,816,252 41, 980, 324

8 Memory overflow Memory overflow

10 - -

86

Problems with Markov (or State Space) Models and
their solutions

 State space explosion or the largeness problem
 Stochastic Petri nets and related formalisms for easy

specification and automated generation/solution of
underlying Markov model --- Largeness Tolerance

 Use hierarchical (Multilevel) model composition
 Largeness Avoidance
 e.g. Upper level : FT or RBD, lower level: Markov chains
 Many practical examples of the use of hierarchical

models exist
 Can also use state truncation

87

Analytic Modeling Taxonomy

Hierarchical composition
To avoid largeness

Analytic models

Non-state-space methods
Efficiency, simplicity

State-space methods
Dependency capture

88

State Space Explosion
 Number of components in systems can be hundreds,

nay thousands!
 Number of states in a Markov model will be a

gazillion!
 State space explosion can be avoided by decomposing

system into subsystems, modeling each subsystem
separately and then composing sub-model results
together – SHARPE facilitates this

 Use state-space methods for those subsystems that
require them, and use simple non-state-space
methods (RBD, Ftree) for the more “well-behaved”
parts of the system

89

Largeness Avoidance
 Main reason for hierarchical (or multilevel) models: avoid

generating/solving large monolithic models; that is for
tractability

 In SHARPE we can mix and match different paradigms and to
arbitrary levels

 Can choose the “right” paradigm for each subsystem
 Note that some tools/approaches use hierarchy merely for

specification and a monolithic model is constructed by the tool
 We are advocating hierarchy not only for specification but also

for solution
 Hierarchy does not always mean an approximation
 Most practical problems I have solved have 2 or more levels

with the top level being RBD/ftree and Markov models at the
lowest level

90

Availability Analysis: SUN Microsystems

 Carrier-Grade High Availability Software Platform
 Model taking into account hardware component

failures, software component failures and various
types of recovery

 Hierarchical model composition – Markov chains
at the lower-level, RBD at the top level

 Ref: Trivedi, Vasireddy, Trindade, Nathan, Castro, “Modeling High
Availability Systems,” Proc. PRDC 2006.

91

Sun Microsystems – overall model hierarchy

…

92

Import Graph – SUN Model

93

In the Import graph, Nodes are submodels
Arc indicates output of a submodel as an input parameter to another submodel

High-Availability SIP System
 Real problem from IBM

 SIP: Session Initiation Protocol

 Hardware platform: IBM Blade Center

 Software platform: IBM WebSphere

 A Telco (potential) customer asked IBM for models to
quantify this product

 IBM asked me to lead the modeling project

 To quantify system (steady-state) availability
Ref: Trivedi, Wang, Hunt, Rindos, Smith, Vashaw, “Availability
Modeling of SIP Protocol on IBM WebSphere,” PRDC 2008

 To quantify a user-oriented metric called DPM
Ref: Trivedi, Wang & Hunt. “Computing the number of calls
dropped due to failures,” ISSRE2010 94

Architecture of SIP on IBM WebSphere

Replication
domain Nodes

1 A, D
2 A, E
3 B, F
4 B, D
5 C, E
6 C, F

AS: WebSphere Appl.
Server (WAS)

95

Architecture of SIP on IBM WebSphere

96

 Hardware configuration:
 Two BladeCenter chassis; 4 blades (nodes) on each chassis (1 chassis

would have been sufficient from the performance perspective)

 Software configuration:
 2 copies of SIP/Proxy servers (1 sufficient for performance)

 12 copies of WAS (6 sufficient for performance)

 Each WAS instance forms a redundancy pair (replication domain) with
WAS installed on another node on a different chassis

The system has both, hardware redundancy
and software redundancy

Design diversity
 Recovery block
 N-version programming
 ……

Classical Techniques

Expensive 
not used much
in practice!

Design
diversity

Yet there are
stringent

requirements for
failure-free
operation

Challenge: Affordable Software Fault Tolerance

97

Software Fault Tolerance:

A possible answer: Environmental Diversity

Software Redundancy
 Identical copies of SIP proxy used as backups (hot spares)

 Identical copies of WebSphere Applications Server (WAS) used as

backups (hot spares)

 Type of software redundancy – (not design diversity) but replication

of identical software copies

 Normal recovery after a software failure – uses time redundancy

 Restart software, reboot node or fail-over to a software replica; only

when all else fails, a “software repair” is invoked

98

SIP Application Server on IBM WebSphere

Have been known to help
in dealing with hardware
transients

RQ: Do they help in dealing
with failures caused by
software bugs?

If yes, why?

Retry

Restart

Reboot!

1 2

3

99

Software Fault Tolerance: New
Thinking

Failover to an identical software replica
(that is not a diverse version)

Does it
help?

If yes,
why?

Thirty years ago this would be considered crazy!

100

Software Fault Tolerance: New
Thinking

Software fault classification

Bohrbug (BOH) := A fault that is easily isolated and
that manifests consistently under a well-defined set of
conditions, because its activation and error propagation
lack complexity.

Non-Aging related Mandelbug (NAM) := A fault whose
activation depends on the environment besides the
workload. Environment refers to other applications
concurrently running, interactions with OS and hardware

Aging related bug (ARB) := A fault that leads to the
accumulation of errors either inside the running application
or in its system-context environment, resulting in an
increased failure rate and/or degraded performance.

101
Ref:. Grottke, Trivedi, “Fighting Bugs: Remove, Retry, Replicate and
Rejuvenate,” IEEE Computer, 2007

Software Fault Tolerance: New Thinking

Environmental Diversity as opposed to Design Diversity

Our claim is that this (retry, restart, reboot, failover to
identical software copy) may well work since failures
due to Mandelbugs are not negligible. We thus have an
affordable software fault tolerance technique that we
call Environmental Diversity

102

Environmental
Diversity

Back to the Availability Model

Failures

Physical failures Software failure

Power
faults OS

Memory faults
NIC faults

Cooling
faults

Blade
faults

midplane
faults

Network
faults

CPU faults
base faults

Application

I/O (RAID) faults

WAS Proxy

112 components (hardware and software)

103

Availability model of SIP on IBM WebSphere
 Single monolithic Markov model will have extraordinarily

large number of states – we use a multi-level approach

 Subsystems modeled using Markov chains to capture dependence
within

 Fault tree used at higher levels as independence across
subsystems can be reasonably assumed

 This is an example of hierarchical composition
 A single monolithic model is not constructed/stored/solved
 Each submodel is built and solved separately and results are

propagated up to the higher-level model
 Our software package SHARPE facilitates such hierarchical

model composition
104

Availability model of SIP on IBM WebSphere

 SIP top level of the availability model

AS6

6C BSC CM1

AS5

5C BSC CM1

AS4

4B BSB CM1

AS3

3B BSB CM1

AS2

2A BSA CM1

AS1

1A BSA CM1

AS12

6F BSF CM2

AS11

3F BSF CM2

AS10

5E BSE CM2

AS9

2E BSE CM2

AS8

4D BSD CM2

AS7

1D BSD CM2

App
servers

System Failure

PX1

P1 BSG CM1

PX2

P2 BSH CM2

proxy

system

k of 12

iX: ith appserver on node X
Pi: ith proxy server
BSX: node X hardware
CMi: chassis i hardware

105

CM

MP Cool Pwr

CM Failure

Chassis failure

BS

Base CPU Mem RAID OS
eth

eth1 eth2

nic1 nic2esw1 esw2

BS Failure

Blade server failure

A circle as a leaf node is a basic event
An inverted triangle is a shared event
A square indicates a submodel

Availability model of SIP on IBM WebSphere

 Availability models of a Blade Server and Common Blade Center
Hardware

106

Availability model of SIP on IBM WebSphere

 Markov Availability models of subsystems

UP U1

DN

RP

cmp⋅λmp

(1-cmp)⋅λmp

αsp

µmp

αsp

midplane model Cooling subsystem model

UP U1 RP

DN

DW
2λc

λc

αsp

µc

λc

µ2c

αsp

107

Availability model of SIP on IBM WebSphere

 Availability models of subsystems

UP U1

DN

RP DW
2cps⋅λps αsp

µps

λps

µ2ps

2(1-cps)⋅λps
αsp

λps

UP D1 RP
2λcpu αsp

µcpu

UP D1 RP
4λmem αsp

µmem

Power domain model

CPU model
memory model

Base, Switch and NIC

UP DN RP
λ αsp

µ

108

RAID model

OS model

Availability model of SIP on IBM WebSphere

 Availability models for subsystems (cont.)

UP DN DWλOS

µOS

RP
αsp

bOSβOS

(1-bOS)βOS
DT

δOS

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

109

Markov Availability model WebSphere AP
Server

UA UR UB
(1-r)ρm

rρm
qρa

(1-q)ρa

bβm

RE
(1-b)βm

µ

UOUP
γ eδ2

1D

eδ2dδ1

(1-e)δ2

UN

δm

1N

(1-d)δ1

(1-e)δ2

2N (1-d)δ1

(1-e)δ2

eδ2 dδ1

 Failure detection
 By WLM
 By Node Agent
 Manual detection

 Recovery
 Node Agent

 Auto process restart
 Manual recovery

 Process restart
 Node reboot
 Repair

• Application server and proxy server (with escalated levels of recovery)
• Delay and imperfect coverage in each step of recovery modeled
• Use of restart, failover to an identical replica or reboot as a method of

recovery after a software failure

110

Hierarchical Composition

CM

MP Cool Pwr

CM Failure

BS

Base CPU Mem RAID OS
eth

eth1 eth2

nic1 nic2esw1 esw2

BS Failure

UA UR UB
(1-r)ρm

rρm
qρa

(1-q)ρa

bβm

RE
(1-b)βm

µ

UOUP
γ eδ2

1D

eδ2dδ1

(1-e)δ2

UN

δm

1N

(1-d)δ1

(1-e)δ2

2N (1-d)δ1

(1-e)δ2

eδ2 dδ1

UP U1

DN

RP DW
2cps⋅λps αsp

µps

λps

µ2ps

2(1-cps)⋅λps
αsp

λps

AS6

6C BS C CM 1

AS 5

5C BS C CM 1

AS 4

4B BS B CM 1

AS 3

3B BS B CM 1

AS2

2A BS A CM 1

AS1

1A BS A CM 1

AS 12

6F BS F CM 2

AS 11

3F BS F CM 2

AS 10

5E BS E CM 2

AS9

2E BS E CM 2

AS 8

4D BS D CM 2

AS7

1D BS D CM 2

App
servers

System Failure

PX1

P1 BS G CM 1

PX 2

P2 BS H CM 2

proxy

system

k of 12 AS1

1A BSA CM1

A single monolithic Markov
model will have too many states

111

Model Parameterization
 Types of parameters

 Hardware component failure rates
 Software component failure rates
 Detection, restart, reboot, repair delays
 Imperfect coverages for each of the above recovery phases

 The parameter values obtained from
 Field data for hardware component failure rates
 High availability testing for detection/restart/reboot delays
 Agreed upon assumptions for other parameters

 Uncertainty in parameter values (assumed value or based on
limited test data)
 Sensitivity analysis w.r.t. that parameter performed

112

Pa
ra

m
et

er
s f

or
 th

e
H

ar
dw

ar
e

C
om

po
ne

nt
s

113

Pa
ra

m
et

er
s f

or
 th

e
so

ft
w

ar
e

co
m

po
ne

nt
s

114

System and subsystem downtime (min/year)

115

 Downtime at different levels of AS redundancy (k-1)
 Downtime of individual components

Availability model of SIP on IBM
WebSphere (contributions)

 Developed a very comprehensive availability model
 Hardware and software failures
 Hardware and Software failure-detection delays
 Software Failover delay
 Escalated levels of recovery

 Automated and manual restart, reboot, repair
 Imperfect coverage (detection, failover, restart, reboot)

 Many of the parameters collected from experiments, some obtained
from tables; few of them assumed

 Detailed sensitivity analysis to find bottlenecks and give feedback to
designers

 Developed a new method for calculating DPM (defects per million)
 Taking into account interaction between call flow and failure/recovery
 Retry of messages (this model will be published in the future)

 This model was responsible for the sale of the system by IBM

116

Import graph for SIP Availability Model

117

Hierarchical Composition

 Many more examples of such models can be found in
the book (Trivedi & Bobbio, Reliability and
Availability: Modeling, Analysis, Applications,
Cambridge University Press, 2017) and other papers
 Availability Models
 Reliability Models
 Performance Models
 Performability Models
 Survivability Models
 Dynamic Fault Tree Models

118

Hierarchical Composition
 Matrix-Level vs. Model-Level vs. System-Level Decomposition
 Multi-level modeling formalism -- meta-modeling language?
 What kinds of quantities to pass between sub-models?
 Exact vs. approximate solution
 If approximate, bounding/estimating errors of approximation?
 Import graph

 Acyclic
 Cyclic  Fixed-point iteration

119

Analytic Modeling Taxonomy

Hierarchical models
Largeness avoidance

Analytic models

Combinatorial models
Efficiency, simplicity

State-space models
Dependency capture

Fixed point iteration
Nearly independent

120

Return to the SIP Availability Model

 We ignored one dependence assuming its
effect will be negligible

 Two App servers share a blade server node

121

Architecture of SIP on IBM WebSphere

Replication
domain Nodes

1 A, D
2 A, E
3 B, F
4 B, D
5 C, E
6 C, F

AS: WebSphere Appl.
Server (WAS)

122

Return to the SIP Availability Model

 Two App servers share a blade server node
 If one App server needs reboot its OS or

repair of the blade is needed, it affects the
other app server on the same blade – a
forced dependence

 We ignored this dependence earlier
 We now account for this dependence

123

Two app server CTMCs run nearly independently

124

Two app server CTMCs run nearly independently

But need to be synchronized at state UB
since when one app server needs to be rebooted, the
other is forced to be rebooted

Similarly the two need to be synchronized at states RE
since when one app server blade needed to be repaired,
the other is to repair

Need to combine the two CTMCs

125

Two Synchronized app servers

 Combined Markov model (CTMC) is too large to
construct by hand.

 We use a high-level formalism of stochastic Petri net
(the flavor known as stochastic reward net (SRN)).

 SRNs extend other SPN formalisms by adding variable
cardinality arcs, transition priorities, guard functions
and the ability to specify reward rates at the net level

 SRN models can be automatically converted into
underlying Markov (reward) model and solved for
the measures of interest such as DT (downtime) and
many more

126

In order to model the synchronization

 We use an SRN model to show two
synchronized CTMCs and solve the SRN
model using SHARPE software package

 We start by first converting single app
server CTMC to an SRN

127

SRN Availability Model of a single app server

128

In order to model the synchronization

 We use an SRN model to show two
synchronized CTMCs and solve the SRN
model using SHARPE

 Dotted arcs are variable cardinality arcs
that flush the places of any token they may
have

129

SRN Availability Model of two synchronized app servers

130

Two synchronized app servers model

131

 We used an SRN model to capture two synchronized
CTMCs and solve the SRN model using SHARPE

 Underlying reachability graph has 65 vanishing
markings and 66 tangible markings – so the CTMC
generated from this SRN has 66 states

 Note that if two CTMCs were independent then the
combined composed CTMC will have the cross-
product state space with 10*10=100 states

 But 8 out of 10 states of each CTMC are independent
while 2 states are common or shared states. Hence
the resulting number of states is 8*8+2=66

CTMC approximation

132

 Then we develop a simple approximate CTMC in
which we have added a transition (shown as dotted
arcs) from each of the states, UP, UO, 1N, 2N, 1D,
UA, UN and UR to state UB at rate x as shown in the
next slide

 Now each app server CTMC model can be
considered independent for the overall SIP
availability model

Modified CTMC to account for forced reboot

133

Fixed-Point Iteration

134

 Since x is an input parameter for the CTMC, πUR is a
function of x, thus, we have a fixed-point problem:

 Rate x= πUR (x)*(1-r) * ϱm

 We initialize x so that x0=0.0001*(1-r) * ϱm

 We solve iteratively using successive substitution:
 xi+1= πUR (xi)*(1-r) * ϱm

Fixed-Point Iteration

135

 It took only 3 iterations to converge to a fixed
point

 App server steady state availability computed with
the exact composed CTMC and with the fixed-point
iteration approximation are both 0.999844145

 The effect of this dependency is negligible as the
steady state availability of the app server without
the dependence is 0.999845429 while with the
dependence it is 0.999844145

Scalable Model for IaaS Cloud
Availability and Downtime

Ref: Ghosh, Longo, Frattini, Russo, Trivedi,
“Scalable Analytics for IaaS Cloud Availability,”

IEEE Trans. Cloud Comput., 2014

136

Monolithic SRN Model

137

Monolithic Model
Monolithic SRN model is automatically translated into CTMC or
Markov Reward Model
However the model not scalable as state-space size of this model is
extremely large

#PMs per pool #states #non-zero matrix
entries

3 10, 272 59, 560

4 67,075 453, 970

5 334,948 2, 526, 920

6 1,371,436 11, 220, 964

7 4,816,252 41, 980, 324

8 Memory overflow Memory overflow

10 - -

138

Decompose into Interacting Sub-models

SRN sub-model for hot pool

SRN sub-model for warm pool
SRN sub-model for cold pool

139

Import graph and model outputs

 Model outputs:
 mean number of PMs in each pool (E[#Ph], E[#Pw], and E[#Pc])
 Downtime in minutes per year

140

Many questions

 Existence of Fixed Point (easy): IEEE TCC
2014 (In a more general setting: Mainkar
& Trivedi paper in IEEE-TSE, 1996)

 Uniqueness (some cases)
 Rate of convergence
 Accuracy
 Scalability

141

Monolithic vs. interacting sub-models

 #states, #non-zero entries

142

Steps for system availability modeling

 List all possible component level failures (hardware, software)
 List of all failure detectors & match with failure types
 List all recovery mechanisms & match with failure types
 Allocation of software modules to hardware units
 Formulate the model
 Face validation and verification of the model
 Parameterization of the model (tables, websites, experiments)
 Solve the model (using SHARPE, SPNP or similar software

packages) to detect bottlenecks, sensitivity analysis, suggest
parameters to be monitored more accurately

 What-if analysis to suggest improvements
 Validate the model

143

Outline

 Introduction and Motivation
 Reliability and Availability Models
 Conclusions
 References

144

System Reliability/Availability Models

 Techniques & software packages are available for the
construction & solution of reliability and availability models of
real systems

 System decomposition followed by hierarchical model
composition is the typical approach

 Modeling has been used
 To compare alternative designs/architectures (Cisco)
 Find bottlenecks, answer what if questions, design optimization and

conduct trade-off studies
 At certification time (Boeing)
 At design verification/testing time (IBM)
 Configuration selection phase (DEC)
 Operational phase for system tuning/on-line control

145

System Reliability/Availability Models
 Model Types in Use

 Non-state-Space: Reliability Block Diagram, Fault tree, Reliability
graph

 State-space: Markov models & stochastic Petri nets, Semi-Markov,
Markov regenerative and non-homogeneous Markov models

 Hierarchical composition
 Top level is usually an RBD or a fault tree
 Bottom level models are usually Markov chains

 Fixed-point iterative
 Solution types

 Analytic closed-form
 Analytic numerical (using a software package)
 Simulative

 Software packages
 SHARPE or similar tools are used to construct and solve such models

 Structural as well as parametric assumptions means that numbers
produced should be taken with a grain of salt

146

Challenges in Reliability/Availability Models
 Model Largeness (in spite of: hierarchy, fixed-point

iteration, approximations) – Smartgrid models
 Dealing with non-exponential distributions (in spite of

SMP, MRGP, NHCTMC, PH)
 Service (or user)-oriented measures as opposed to

system-oriented measures
 Combining performance, power and failure/repair

 Performability, two-level models, use of Markov-reward models

 Model Parameterization
 Model Validation and Verification
 Parametric uncertainty propagation

147

Challenges in Reliability/Availability Models

 Model Verification and Validation
 Verification
 checked by someone else,
 check logical flows,
 cross-check using alternative solutions (e.g. alternative

analytic/simulation)
 Validation
 Face validation,
 Input-Output validation,
 Validation of model assumptions

148

Model Parameterization
 Hardware/Software Configuration parameters
 Hardware component MTTFs
 Software component MTTFs

 OS, IBM Application, customer software, third party
 Hardware/Software Failover times
 Restart/Reboot times
 Coverage (Success) probabilities

 Detection, location, restart, reconfiguration, repair
 Repair time

 Hot swap, multiple component at once, DOA (dead on arrival),
shared/not shared, field service travel time, preventive vs.
corrective

 Uncertainty propagation: Dealing with not only Aleatory (built into
the system models) but also epistemic (parametric) uncertainty

149

Message to Young Researchers
 Pick a real problem rather than one from literature

whenever possible
 There should be plenty of real problems in Industry
 Keep an open mind
 Ask questions and Listen carefully

 It is possible to write scholarly articles based on work
done on real problems

 Use software packages [e.g., SHARPE, SPNP] whenever
applicable [as opposed writing your own code to
generate and solve models]

150

Outline of the book: Reliability and
Availability Engineering

Part I – Introduction (Chapters 1:3)

Part II - Non-state-space models (Chapters 4:8)

Part III - State-space Models with Exponential
Distributions (Chapters 9:12)

Part IV - State-space Models with Non-
Exponential Distributions (Chapters 13:15)

Part V - Multi-Level Models (Chapters 16:17)

Part VI - Case Studies (Chapter 18)

151

Outline of the book: Reliability and
Availability Engineering

152

Outline

 Introduction and Motivation
 Reliability and Availability Models
 Conclusions
 References

153

Selected References
 Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science

Applications. John Wiley, 2nd edition, 2001; revised paperback, 2016
 Tomek & Trivedi, Fixed-Point Iteration in Availability Modeling, Informatik-Fachberichte, Dal

Cin (ed.), Springer-Verlag, Berlin, 1991
 Mainkar & Trivedi, Sufficient Conditions for Existence of a Fixed Point in Stochastic Reward

Net-Based Iterative Models, IEEE TSE, 1996
 Trivedi, Vasireddy, Trindade, Nathan, Castro, “Modeling High Availability Systems,” PRDC

2006
 Trivedi & Bobbio, Reliability and Availability: Modeling, Analysis, Applications, Cambridge

University Press, 2017
 Trivedi, Wang, Hunt, Rindos, Smith, Vashaw, “Availability Modeling of SIP Protocol on IBM

WebSphere,” PRDC 2008
 Smith, Trivedi, Tomek, Ackaret, Availability analysis of blade server systems, IBM Sys. J., 2008.
 Trivedi & Sahner, SHARPE at the Age of Twenty two, ACM SIGMETRICS, Performance

Evaluation Review, 2008
 Trivedi, Wang & Hunt. “Computing the number of calls dropped due to failures,” ISSRE2010
 Mishra, Trivedi & Some. "Uncertainty Analysis of the Remote Exploration and

Experimentation System", AIAA Journal of Spacecraft and Rockets, 2012
 Ghosh, Longo, Frattini, Russo & Trivedi, “Scalable Analytics for IaaS Cloud Availability”, IEEE

Trans. on Cloud Computing, 2014
 Malhotra, Trivedi, “Power-Hierarchy of Dependability -Model Types,” IEEE-TR, 1994

154

Thank you!

155

Contact Information and more sources

Kishor Trivedi: ktrivedi@duke.edu
www.researchgate.net/profile/Kishor_Trivedi2

Andrea Bobbio: andrea.bobbio@uniupo.it

156

mailto:ktrivedi@duke.edu
mailto:andrea.bobbio@uniupo.it

	Reliability and Availability Modeling in Practice�IFIP 7.3 Performance Conference -- Tutorial�Nov. 2, 2020
	IFIP 7.3 Performance Conference 2020
	Tutorial Objective
	Tutorial Outline
	Motivation: �Dependence on Technical Systems
	Example Failures from High Tech companies
	More examples of real failures
	 Very Recent Examples
	Need Methods
	Introduction
	Need for a new term
	Dependability– An umbrella term
	Difference between reliability and availability��
	Definitions from IFIP WG10.4
	A Classification of Faults
	Failure Classification
	Basic Definitions
	Basic Definitions
	Basic Definitions
	Basic Definitions
	Basic Definitions
	Basic Definitions
	Basic Definitions
	Basic Definitions
	Number of Nines– Reality Check
	Failures & Downtime Lead to
	Need Methods
	Methods to Improve Dependability
	Methods Overview (Redundancy)
	Methods Overview (Redundancy)
	Methods Overview (Maintenance)
	Need Methods
	 Quantitative Assessment approaches
	 Quantitative Assessment approaches
	 Quantitative Assessment approaches
	Two Types of Uncertainty
	Outline
	Overview of Assessment Methods
	Analytic Methods Taxonomy
	Non-State-Space Methods : taxonomy
	Cisco & Juniper Routers
	Modeling High Availability Systems: Sun Microsystems
	Series-Parallel RBDs
	Fault Trees
	Fault Tree Model of GE Truck- AC6000
	Fault Tree Model of GE Equipment Ventilation System
	Slide Number 47
	Software Package SHARPE
	Fault trees
	Solution time for Very Large Fault trees
	Fault Trees (Continued)
	Reliability Graph (relgraph)
	Relgraphs
	Avionics
	Reliability Analysis of Boeing 787
	Reliability Analysis of Boeing 787
	Reliability Analysis of Boeing 787
	Reliability Analysis of Boeing 787 (cont’d)
	Reliability Analysis of Boeing 787 (cont’d)
	Reliability Analysis of Boeing 787 (cont’d)
	RBD->Relgraph->ftree
	Power-hierarchy of modeling formalisms
	Non-state-space Methods (cont’d)
	Statistical Dependence
	State-space methods : Markov chains
	Analytic Methods Taxonomy
	Markov model of SIP on IBM WebSphere
	A CTMC Reliability model of the Linux OS
	SHARPE Input file for the Linux Model
	SHARPE Output file for the Linux Model
	SHARPE Input file for the Linux Reliability Model (state 4 absorbing)
	SHARPE Input file for the Linux Reliability Model (state 4 absorbing)
	Markov (CTMC) Availability model of App Server
	 CTMC with Infinitesimal Generator matrix Q
	State-Space methods taxonomy
	Should I Use Markov (CTMC) Models?
	Markov Models
	Problems with Markov (or State Space) Models and their solutions
	Slide Number 80
	Three Pools of Physical Machines (PMs)
	System Operation Details
	Analytic model
	 Monolithic Stochastic Reward Net Model
	Other High-Level Formalisms
	Monolithic Model
	Problems with Markov (or State Space) Models and their solutions
	Analytic Modeling Taxonomy
	State Space Explosion
	Largeness Avoidance
	Availability Analysis: SUN Microsystems �
	Sun Microsystems – overall model hierarchy
	Import Graph – SUN Model
	High-Availability SIP System
	Architecture of SIP on IBM WebSphere
	Architecture of SIP on IBM WebSphere
	Software Fault Tolerance:
	SIP Application Server on IBM WebSphere
	Software Fault Tolerance: New Thinking
	Software Fault Tolerance: New Thinking
	Software fault classification
	Software Fault Tolerance: New Thinking
	 Back to the Availability Model
	Availability model of SIP on IBM WebSphere
	Availability model of SIP on IBM WebSphere
	Availability model of SIP on IBM WebSphere
	Availability model of SIP on IBM WebSphere
	Availability model of SIP on IBM WebSphere
	Availability model of SIP on IBM WebSphere
	Markov Availability model WebSphere AP Server
	Hierarchical Composition
	Model Parameterization
	Parameters for the Hardware Components
	Parameters for the software components
	System and subsystem downtime (min/year)
	Availability model of SIP on IBM WebSphere (contributions)
	Import graph for SIP Availability Model
	Hierarchical Composition
	Hierarchical Composition
	Analytic Modeling Taxonomy
	Return to the SIP Availability Model
	Architecture of SIP on IBM WebSphere
	Return to the SIP Availability Model
	Two app server CTMCs run nearly independently ��
	Two app server CTMCs run nearly independently ���But need to be synchronized at state UB�since when one app server needs to be rebooted, the other is forced to be rebooted��Similarly the two need to be synchronized at states RE since when one app server blade needed to be repaired, the other is to repair��Need to combine the two CTMCs
	Two Synchronized app servers
	In order to model the synchronization
	SRN Availability Model of a single app server
	In order to model the synchronization
	SRN Availability Model of two synchronized app servers
	Two synchronized app servers model��
	CTMC approximation ��
	Modified CTMC to account for forced reboot ��
	Fixed-Point Iteration ��
	Fixed-Point Iteration ��
	Slide Number 136
	Monolithic SRN Model
	Monolithic Model
	Decompose into Interacting Sub-models
	Import graph and model outputs
	 Many questions
	Monolithic vs. interacting sub-models
	 Steps for system availability modeling
	Outline
	 System Reliability/Availability Models
	System Reliability/Availability Models
	Challenges in Reliability/Availability Models
	Challenges in Reliability/Availability Models
	Model Parameterization
	Message to Young Researchers
	Outline of the book: Reliability and Availability Engineering
	Outline of the book: Reliability and Availability Engineering
	Outline
	Selected References
	Slide Number 155
	Contact Information and more sources

